
307-CD-001-003
329-CD-001-003

EOSDIS Core System Project

Flight Operations Segment (FOS)
Release Plan and Development Plan

for the ECS Project

October 1995

Hughes Information Technology Corporation
Upper Marlboro, Maryland

307-CD-001-003
329-CD-001-003

Flight Operations Segment (FOS)
Release Plan and Development Plan

for the ECS Project

October 1995

Prepared Under Contract NAS5-60000
CDRL Items 048 and 058

APPROVED BY

Cal E. Moore /s/ 9/29/95

Calvin Moore, FOS Segment Manager Date
EOSDIS Core System Project

Hughes Information Technology Corporation
Upper Marlboro, Maryland

307-CD-001-003
329-CD-001-003

This page intentionally left blank.

iii 307-CD-001-003
329-CD-001-003

Preface

The contents of this document define both the development plan and the release plan for the Flight
Operations Segment (FOS). Thus, this document addresses the data item descriptions for CDRL
048 and CDRL 058, 307/DV2-001 and 329/DV2-002, respectively.

This document is a formal contract deliverable with an approval code 2. As such, it does not
require formal Government approval, however, the Government reserves the right to request
changes within 45 days of the initial submittal or any subsequent revision. Changes to this
document shall be made by document change notice (DCN) or by complete revision.

Once approved, this document shall be under the Flight Operations Segment Configuration Control
Board. Any questions or proposed changes should be addressed to:

Data Management Office
The ECS Project Office
Hughes Information Technology Corporation
1616 McCormick Dr.
Upper Marlboro, MD 20774-5372

iv 307-CD-001-003
329-CD-001-003

This page intentionally left blank.

v 307-CD-001-003
329-CD-001-003

Change Information Page

List of Effective Pages

Page Number Issue

iii through viii Final Copy

1-1 through 1-2 Final Copy

2-1 through 2-2 Final Copy

3-1 through 3-26 Final Copy

4-1 through 4-38 Final Copy

5-1 through 5-2 Final Copy

AB-1 through AB-10 Final Copy

GL-1 through GL-8 Final Copy

Document History

Document
Number

Status/Issue Publication Date CCR Number

307-CD-001-001
329-CD-001-001

Review Copy November 1994 94-0175

307-CD-001-002
329-CD-001-002

Final Copy January 1995 95-0069

307-CD-001-003
329-CD-001-003

Final Copy October 95-0705

vi 307-CD-001-003
329-CD-001-003

This page intentionally left blank.

vii 307-CD-001-003
329-CD-001-003

Contents

Preface

1. Introduction

1.1 Identification .. 1-1

1.2 Scope .. 1-1

1.3 Purpose .. 1-1

1.4 Status and Schedule.. 1-1

1.5 Document Organization.. 1-2

2. Related Documentation

2.1 Parent Document .. 2-1

2.2 Applicable Documents .. 2-1

2.3 Information Documents.. 2-1

2.3.1 Information Documents Referenced... 2-1

3. FOS Development Guidelines and Standards

3.1 Background .. 3-1

3.2 Engineering Products .. 3-2

3.2.1 Preliminary Design Phase Engineering Products. 3-2

3.2.2 Detailed Design Phase Engineering Products . 3-4

3.3 Object Oriented Development Guidelines.. 3-5

3.3.1 Preliminary Design Criteria .. 3-6

3.3.2 Detailed Design Criteria... 3-10

3.4 FOS Development.. 3-18

3.4.1 Naming Conventions .. 3-18

3.4.2 Dynamic Model Template .. 3-28

viii 307-CD-001-003
329-CD-001-003

3.4.3 OMT Naming Conventions .. 3-25

3.4.4 FOS Terms and Concepts .. 3-26

3.5 Configuration Management .. 3-26

4. FOS Release Development Plan

5. FOS Development Schedules

5.1 FOS Supplementary Master Schedule .. 5-1

Tables

3-1. FOS CDRL Summary Table .. 3-1

4-1. Scenario Summary Matrix... 4-1

4-2. FOS Scenario Matrix... 4-7

Abbreviations and Acronyms

Glossary

1-1 307-CD-001-003
329-CD-001-003

1. Introduction

1.1 Identification

This document is the FOS Release Plan and Development Plan for the ECS project which are items
048 and 058 on the Contract Data Requirement List (CDRL) and defined by Data Item Descriptions
(DIDs) 307/V2 and 329/DV2 under contract NAS5-6000.

1.2 Scope

The development plan component provides detailed plans of technical development factors required
to implement the FOS. The plan identifies a phased implementation approach for the development
of the FOS, and allocates segment functions among the phases. The plan shows the organizations
of the development effort to the lowest level of the Work Breakdown Structure (WBS). Technical
efforts and schedules associated with the development are consistent with overall segment
development plans.

The release plan component includes a reference to the schedules for the segment builds and maps
the builds into releases. This plan identifies the implementation approach for the development of
the FOS, including the partitioning of the task into release and builds within each release.

This document is under the FOS Configuration Control Board (CCB) for the November 1994 draft
submittal and the final Release A submittal. Changes to these volumes must be approved by this
CCB prior to inclusion in this document.

This document reflects the August 23, 1995 Technical Baseline maintained by the contractor
configuration control board in accordance with ECS Technical Direction No. 11 dated December 6,
1994. It covers releases A and B for FOS.

1.3 Purpose

This document defines the Flight Operations Segment (FOS) developmental release plan. It
focuses on delineating the approach that will be taken to incrementally develop the FOS.

1.4 Status and Schedule

This submittal of DIDs 307/DV2 and 329/DV2 meets the milestone specified in the Contract Data
Requirements List (CDRL) of NASA contract NAS5-60000. It is anticipated that this submittal
will be reviewed during the appropriate segment- or system-level post Preliminary Design Review
(PDR) timeframe, and that subsequent changes to the document will be incorporated into a
resubmittal according to a schedule mutually agreed to by GSFC and ECS. This document is a
final version.

1-2 307-CD-001-003
329-CD-001-003

1.5 Document Organization

The document is organized to describe the approach to develop the FOS:

Section 1.0 provides information concerning the identification, scope, and organization of this
document.

Section 2.0 provides a list of applicable documents, which were used directly or indirectly in the
preparation of this document.

Section 3.0 defines the FOS-unique development guidelines and standards. These development
guidelines and standards are based on the ECS Software Development Plan, ECS System
Engineering Plan, and the ECS System Implementation Plan. In general, this section will
reference these three documents. Any unique additions or clarifications pertaining to the
development guidelines and standards in relation to these three project plans will be documented in
this section.

Section 4.0 defines the FOS release development plan. This includes the allocation of functions to
releases. For FOS, this allocation is between Release A and Release B. The defined functions or
threads in the system will be organized to show the phasing of the development effort within a
release. In particular, the dependencies and sequencing of the development effort will be outlined
in this section.

Section 5.0 references the FOS development schedules. It will build on the information included
in section 4.0, and define the dependencies both internal to FOS from the ECS project, and
external dependencies (e.g., spacecraft and instrument dependencies). Note: the specific FOS
development schedules will be referenced in this section, not explicitly included.

Abbreviations and acronyms contains an alphabetized list of the definitions for abbreviations and
acronyms used with this document

Glossary contains the key terms that are included with this release plan.

2-1 307-CD-001-003
329-CD-001-003

2. Related Documentation

2.1 Parent Document

The parent documents are the documents from which this FOS Release Plan's scope and content
are derived.

308-CD-001-004 Software Development Plan for the ECS Project

2.2 Applicable Documents

The following documents are referenced within this document, or are directly applicable, or contain
policies or other directive matters that are binding upon the content of this volume.

194-201-SE1-001 Systems Engineering Plan for the ECS Project

301-CD-002-003 System Implementation Plan for the ECS Project

401-CD-001-002 Verification Specification for the ECS Project

2.3 Information Documents

The following documents are referenced herein and, amplify or clarify the information presented in
this document. These documents are not binding on the content of the FOS Release Plan.

194-102-MG1-001 Configuration Management Plan for the ECS Project

194-202-SE1-001 Standards and Procedures for the ECS Project

193-208-SE1-001 Methodology for Definition of External Interfaces for the ECS Project

194-317-DV1-001 Prototyping and Studies Plan for the ECS Project

194-401-VE1-002 Verification Plan for the ECS Project, Final

194-415-VE1-002 Acceptance Testing Management Plan for the ECS Project, Final

194-501-PA1-001 Performance Assurance Implementation Plan for the ECS Project

194-502-PA1-001 Contractor's Practices & Procedures Referenced in the PAIP for the
ECS Project

604-CD-001-004 Operations Concept for the ECS Project: Part 1-- ECS Overview

604-CD-002-001 Operations Concept for the ECS project: Part 2B -- ECS Release B,
Annotated Outline

604-CD-003-001 ECS Operations Concept for the ECS Project: Part 2A -- ECS Release
A, Final

2-2 307-CD-001-003
329-CD-001-003

194-00285TPW Technical Paper: A Glossary for the ECS Project

222-TP-003-006 Release Plan Content Description for the ECS Project, Technical Paper

423-16-01 Goddard Space Flight Center, EOSDIS Core System Project, Data
Production Software and Science Computing Facility (SCF) Standards
and Guidelines

NHB 2410.9A NASA Security Office, Security, Logistics and Industrial Relations
Division; NASA Automated Information Security Handbook

MIL-HDBK-217F Military Handbook: Reliability Prediction of Electronic Equipment

MIL-HDBK-472 Military Handbook: Maintainability Predictions

3-1 307-CD-001-003
329-CD-001-003

3. FOS Development Guidelines and Standards

3.1 Background

This section defines the FOS-unique development guidelines and standards. These development
guidelines are based on the ECS Software Development Plan, ECS System Engineering Plan, and
the ECS System Implementation Plan. Any unique additions or classifications pertaining to the
development guidelines and standards are included in this section.

Included are lists of engineering products available upon completion of the preliminary and detailed
design phases, guidelines for object oriented development during preliminary and critical design,
standards for documenting the dynamic models and interface class descriptions during design
phases, and the segment configuration management approach. FOS prototype development is
performed in accordance with section 4.1.6 of the ECS Software Development Plan. The
following table represents the set of FOS software development documentation, which will be
delivered throughout the development life cycle.

Table 3-1. FOS CDRL Summary Table (1 of 2)
Document DID Relative Due Date Notes

PDR/IDR

FOS Requirements Specification 304/DV1 2 wks before PDR/IDR

FOS Design Specification 305/DV3 2 wks before PDR/IDR

FOS Release Plan 307/DV2 2 wks before PDR/IDR

FOS Integration and Test Plan 319/DV1 2 wks before PDR/IDR

FOS Development Plans 329/DV2 2 wks before PDR/IDR Included in 307

FOS Database Design & Schema
Specification

311/DV1 1 mo after PDR/IDR Included in 305

Spacecraft Analysis Interface Control
Document (P)

209/DV 2 wks before PDR/IDR

Data Format Control Document(P) 209/SE2 2 wks before PDR/IDR

ASTER Interface Control Document
(P)

209/SE2 2 wks before PDR/IDR

FOS Service Internal Interface
Control Document (P)

313/DV 2 wks before PDR/IDR

CDR

FOS Design Specification 305/DV2 2 wks before CDR

FOS Operations Scenarios 605/OP2 2 wks before CDR

Spacecraft Analysis Interface Control
Document (C)

209/SE2 2 wks before CDR

3-2 307-CD-001-003
329-CD-001-003

Table 3-1. FOS CDRL Summary Table (2 of 2)
Document DID Relative Due Date Notes

Data Format Control Document(C) 209/SE2 2 wks before CDR

ASTER Interface Control Document
(C)

209/SE2 2 wks before CDR

FOS Service Internal Interface
Control Document(C)

313/DV 2 wks before CDR

Science Data Verification Facility
Interface Control Document

209/SE2 2 wks before CDR

FOS Release Plan 307/DV2 2 wks before CDR

FOS Development Plan 329/DV2 2 wks before CDR Included in 307

Other

Software Critical Items List 520/PA2 2 wks before I&TR ATR

FOS Integration & Test Procedures 322/DV3 TRR

Maintenance & Operations
Procedures

609/OP1 2 mo before release

FOS Integration and Test Reports 324/DV3 2 wks before CSR (PR)
6 wks before RRR (F)

ECS Operations Plan 608/OP1 1 mo before RRR

Programmer's Manual 612/OP3 1 mo before release

Discrepancy Reports 413/VE3 2 mo after release

Software Nonconformance Reports
(formal)

521/PA3 monthly/starting with I&T
activities

Prototyping and Studies Final Report 331/DV3 6 mo before K end

(P) = PDR (C) =CDR K= Contract (Pr) = Preliminary (F) = Final

3.2 Engineering Products

The engineering products section identifies the output of the preliminary and detailed design
phases. Section 3.2.1 lists those products associated with the preliminary design phase and
section 3.2.2 lists those associated with the detailed design phase.

3.2.1 Preliminary Design Phase Engineering Products

The following is a list of engineering products produced during the preliminary design phase by
the FOS team:

L4 Requirements Specification

The FOS Requirements Specification includes:

Level 4 Requirements

3-3 307-CD-001-003
329-CD-001-003

• Definition of the Level 4 requirements including general (Vol. 1) and mission-specific (Vol.
2) requirements

Level 4 Requirements Traceability

• A trace of Level 4 requirements to: Level 3 requirements, release, test method (test,
demonstration, inspection, or analysis), IST requirement (yes or no), CSMS requirements
(marked as 'X' if requirement is fulfilled by CSMS services)

• A trace of interface requirements from the Interface Requirements Document(s) (IRDs) to
Level 4 requirements

Design Specification

The FOS Design Specification includes a description of the FOS architecture including both
hardware and software. Additionally, the FOS Design Specification includes the following items
for each FOS subsystem:

Preliminary Context Diagram

• A context diagram for each FOS subsystem that shows all interfaces with other subsystems
and external entities

Preliminary Object Models

• Object models provide multiple views that focus on different portions of the subsystem at
various levels of abstraction

• Every class is fully expanded in at least one view

• All attributes and operations that play a significant role in meeting a requirement are
represented

• All interface classes are defined

Preliminary Dynamic Models

• Dynamic models include a set of scenarios and event trace diagrams that are representative
of nominal processing conditions

Preliminary Functional Models (Optional)

• Functional models contain descriptions and data flow diagrams of complex operations
found within the object model

Performance Description

• Textual description of performance requirements applicable to a particular subsystem and
an approach to fulfilling these requirements.

Data Dictionary

• A description of each class and it’s associated attributes and operations

Level 4 Requirements Trace to Classes

3-4 307-CD-001-003
329-CD-001-003

• Traceability of Level 4 requirements to classes

Integration and Test Plan

The FOS Integration and Test Plan includes the following items:

Test Case Definition

• Test cases are based on segment scenarios

L4 Requirements Trace to Scenarios

• Maps the segment scenarios to level-4 requirements

3.2.2 Detailed Design Phase Engineering Products

The following is a list of engineering products produced during the detailed design phase by the
FOS team:

Design Specification

The Design Specification produced during the critical design phase contains a level of detail which
is sufficient to allow the system to be coded. This includes PDL for all nontrivial operations.
Because the dynamic models and the functional models are translated into object model constructs,
the object models provide a complete map to the implementation. The detailed dynamic models and
functional models are included to enhance the understanding of the object models.

The FOS Design Specification includes a description of the FOS architecture including both
hardware and software. Segment level event traces are provided for key segment scenarios.
Additionally, the FOS Design Specification includes the following items for each FOS subsystem:

Updated Context Diagram

• Context diagram, for each FOS subsystem, that shows all interfaces with other subsystems
and external entities

• Reflects modification to the Preliminary Context Diagram as a result of the detailed interface
definition process

Detailed Object Models

• Object models provide multiple views that focus on different portions of the subsystem at
various levels of abstraction

• Object models are partitioned into tasks

• Every class is fully expanded in at least one view

• All attributes and operations needed for implementation are represented with signatures
provided for each

• All interface classes are defined and the owner subsystem identified

Detailed Dynamic Models

3-5 307-CD-001-003
329-CD-001-003

• Dynamic models include a set of scenarios and event trace diagrams that are representative
of boundary and erroneous processing conditions as well as the nominal processing
conditions

• State diagrams are included as necessary for non-trivial interface classes to identify
additional attributes, operations and associations necessary for the implementation of the
interface

• State diagrams are included as necessary to define complex interactions between classes

Detailed Functional Models (Optional)

• Functional models contain descriptions and data flow diagram of all complex operations
identified within the object model

Performance Description

• Textual description of performance requirements applicable to a particular subsystem and
an approach to fulfilling these requirements.

Data Dictionary

• A description of each class and it’s associated attributes and operations

Level 4 Requirements Trace to Classes

• Traceability of Level 4 requirements to classes, and if applicable, operations within a class

Program Design Language (PDL)

• PDL is provided for all non-trivial operations defined for each class

• The FOS PDL follows the C++ syntax with class definitions, member functions, and
comments (NOTE: this is a deviation from the ECS Software Development Plan which
defines a FORTRAN-like syntax for PDL)

Unit Test Plans

• Unit test plans/cases are provided in conjunction with unit code inspection. (Note: this is a
deviation from the ECS Software Development Plan which specifies that unit test
plans/cases are provided during design walkthroughs.)

Interface Definition

• Definitions for all interfaces between FOS subsystems, as well as interfaces with external
entities are provided

• Interface definitions include the source, destination, class(es), data structures, nominal
frequency, and description

Database Definition and Schema Specification

• Physical representation of the data base schema to be implemented in support of FOS
subsystem operations

3-6 307-CD-001-003
329-CD-001-003

3.3 Object Oriented Development Guidelines

This section provides guidelines for the object oriented development approach utilized during
preliminary and detailed design. The descriptions of object oriented design principles serve as
tutorials to support development of those criteria which either support or are included in the list of
engineering products to be produced during the design phases.

3.3.1 Preliminary Design Criteria

FOS preliminary design is preceded by the system design phase. The products of the system
design phase are the inputs into preliminary design.

3.3.1.1 Preliminary Design Entrance Criteria

Software preliminary design establishes the software architecture necessary to satisfy the
requirements by transforming the analysis model into a design model. This transformation results
in the restructuring of the model to reflect components, their interfaces, and the outlines of a subset
of classes that are significant to the architecture. Deciding how to decompose the subsystems into
components is an important step of preliminary design. The subsystems are decomposed
recursively into smaller and smaller components until they are small enough to design directly from
primitive or library elements. Once a satisfactory partitioning is achieved, a preliminary
description of the interfaces between the components is able to be defined. In addition, a general
strategy for implementing associations may be identified. Design of external interfaces is
coordinated with appropriate representatives from other subsystems. The classes that are important
to the architecture, or that are needed to satisfy important requirements, are populated with
operations and attributes. Next, the preliminary design is optimized, with a focus on optimizing
the overall software architecture. Finally, requirements mappings are updated to account for model
changes that occur during preliminary design.

3.3.1.1.1 Updated Scenarios Defining Subsystem-level Interactions

A set of segment scenarios is established when the Preliminary Design Phase is entered. At this
point the scenarios reflect the steady state behavior of the system.

• Reflect Operations Concept Document

Scenarios defined during the preliminary design are derived from the ECS Operations
Concepts Document. The Operations Concept Document captures the system's mission, its
phases and functions, constraints, configurations, and external interfaces. It reflects the
requirements in various situations, both normal and anomalous.

• Reflect Level 3 FOS Requirements

Scenarios defined during the preliminary design we derived from the ECS Functional and
Performance Requirements Specification. This document reflects the Level 3 requirements
for the ECS including functional, performance and interface requirements.

3-7 307-CD-001-003
329-CD-001-003

3.3.1.1.2 Requirements Trace Matrix

Requirements traceability matrices are created, mapping Level-3 requirements to subsystems and
classes.

• L3 to Subsystems and Classes

The L3 requirements are allocated to specific subsystems and are also mapped to specific
model entities within those subsystems. At a minimum, requirements are mapped to
classes and associations found on the object model. If necessary for clarification, mapping
is made to specific attributes and operations. As requirements are decomposed, their
representations in the models are refined, which causes the mappings to become more
specific.

3.3.1.1.3 Subsystem Object (static) Model

An analysis model is developed to identify the classes and associations from the application domain
that are directly relevant to the problem at hand. It is unnecessary to define all attributes for every
class, to make a final distinction between aggregations and associations, or to define the correct
multiplicity for every association at this time. These kinds of issues are refinements to the basic
static structure of the system and are therefore of secondary importance. Prior to entering the
Preliminary Design Phase, the original analysis model is updated to reflect segment architecture
design decisions (see Section 3.3.1.1.6 below).

3.3.1.1.4 Subsystem Event Traces

All scenarios are examined for events that are external to the segment: e.g., signals, inputs,
decisions, interrupts, and actions to/from external actors (hardware, software, users). Events that
are exchanged between classes within the segment also are identified. The sender, receiver, and
attributes of an event are documented. The events may also be organized into a generalization
hierarchy so that they can be parameterized. The sender and receiver of each event should have
been documented. The scenarios are converted into event trace diagrams, that are representative of
nominal processing conditions.

3.3.1.1.5 Preliminary Data Dictionary

At this point the data dictionary contains the names and descriptions of the classes. A check is be
made to ensure that class names are unique.

3.3.1.1.6 Segment Architecture

During System Design phase, the analysis model should have been modified as needed to reflect
segment level architectural decisions. The following bullets summarize some of the main
architectural decisions that are made during this phase.

• Set priorities to guide trade-offs during the rest of the design.

3-8 307-CD-001-003
329-CD-001-003

• Partition segment into subsystems (can be multi-tiered) on the basis of common properties
(cohesiveness of function, physical location, phase of execution, etc.) down to subsystem
level, and allocate subsystems to software, hardware, or human operations.

• Look at segment threads to see if a number of them interact with a single subsystem. This
may indicate a segment level data repository. Establish the data management mechanism
for each such store, perhaps selecting a segment-wide common mechanism.

• Examine segment threads to identify segment resources and establish control mechanisms.
Determine which segment threads are initiated or terminated by an external user and
determine which subsystems are involved. Modify the models and event routing
accordingly. Establish a plan for user interfaces: look and feel, interface standard, etc.

3.3.1.2 Preliminary Design Review Completeness Criteria

3.3.1.2.1 Preliminary Object Models

In the object models, all classes are identified, implying that all requirements are mapped to a
specific class or classes, not that all classes included in the final detailed design are identified.
Note: during detailed design, the models will continue to be refined for the purposes of reuse,
optimization, encapsulation of interfaces, etc.

The object model is examined to ensure that it is really an object model and not a data flow diagram
disguised as an object model. There are certain characteristics that are flags. First is the nature of
the instances of the classes that make up the diagram. Object-oriented designs are usually made up
of classes for which there are many instances of each. If the diagram is made up of classes which,
by and large, have just one instance, then the classes are probably just functions with object
wrappers. Another flag is that the names of the associations connote the passing of data to another
phase of processing. A third indication is that the names of the classes generally imply
functionality rather than things (Manager, Controller, Processor, etc.). Nominally there is one
controller class per object model.

Every allocated requirement is mapped, to the class level. Some requirements may require
collaboration of classes for coverage, which means that associations must be identified as well.

Class Definitions

The attributes that are identified during preliminary design are those that are visible to other classes
in the segment. The internal details of the classes are not included during preliminary design. If
attribute data types are known then they are included, as well as known constraints. Derived
attributes, unless carried over from the analysis model, are not included.

The operations that are identified during preliminary design are those that are intended to be
invoked by other classes. Therefore, sub-operations are not generally placed in the preliminary
design model. Implied operations such as attribute and association access operations,
constructors, and destructors are not included in the preliminary design phase.

All operations support a requirement and no superfluous operations are included. During detailed
design, additional operations may be added -- to improve reusability of a class, for example. Each

3-9 307-CD-001-003
329-CD-001-003

operation represents a distinct behavior that is part of the definition of the class to which the
operation belongs. The overall behavior of a class is represented by the full set of its public
operations.

Interface Classes

Interface classes have the minimum functionality needed to affect the interface. The interface class
is not responsible for controlling the internal behavior of the subsystem. Instead, the interface
class is associated with a controller class, if necessary. The complexity of the interface class
depends upon the complexity of the data being passed between the subsystems and the complexity
of the behavior of the other subsystem. Interface class complexity can be lowered and its
resistance to change enhanced through the use of protocol classes. Communications protocol
classes have the responsibility of passing data from one subsystem to another over a network. An
inter-subsystem interface class may require the behavior of a communication protocol to help it
interface between the two subsystems. The inter-subsystem interface class handles the high level
aspects of the interface, and the communications protocol class handles the low level details of
passing data from one side of the interface to the other.

An inter-subsystem interface encapsulates the state and behavior of another subsystem. Within one
subsystem it is representative of the other subsystem. All communications to the other subsystem
goes through the inter-subsystem interface. When there are many inter-subsystem interfaces, it is
sometimes desirable for interface management reasons to use the same interface class on both sides
of the interface.

3.3.1.2.2 Preliminary Dynamic Models

For each subsystem, the set of segment scenarios is examined to identify those scenarios that
involve the subsystem. This is done by looking at the segment threads and identifying each one
that flows through the subsystem.

A set of event traces is created for each subsystem. Any entities (classes, attributes, associations,
etc.) that are discovered are added to the models. For each event defined in the event traces, a
sender and a receiver are identified. This provides a basis for coordinating the negotiation of
interfaces between segments and between subsystems.

For each subsystem, all external interfaces are identified and captured. Interfaces are encapsulated
within boundary (interface) classes within the subsystem. The attributes and operations of the
interface classes are defined such that all critical data (attributes, operations, or signals) to pass the
subsystem boundary are identified as are the operations needed to effect the transfers. This does
not mean that the full data representations or methods are to be defined in the PDR time frame.

3.3.1.2.3 Overall Consistency

General overall consistency will be a by-product of following the preceding outline in the
development of the preliminary design model.

Level 4 requirements map to Level 3 requirements. Level 4 requirements map to classes and
dynamic models map to classes. This provides an unbroken chain by which high level

3-10 307-CD-001-003
329-CD-001-003

requirements are broken down in to requirements of ever increasing detail, while the corresponding
design models are refined and mapped back to the requirements (i.e. requirements are mapped to
classes).

Inspections can only be completed with a complete data dictionary. Therefore, a data dictionary is
prepared with entries for every modeling entity, It contains a clear description of each class and
any assumptions on its membership or use. The data dictionary also describes associations,
attributes, and operations.

3.3.2 Detailed Design Criteria

3.3.2.1 Detailed Design Entrance Criteria

The products of the preliminary design phase are the inputs into the detailed design phase.
Reference Section 3.2.1 of this document for the list of products and brief descriptions.

3.3.2.2 Detailed Design Phase Completeness Criteria

Detailed design is the process of identifying and designing all software classes that comprise each
component. The purpose of detailed design is to establish a stable, well defined detailed design
that is based upon the requirements allocations and software architecture established during the
preliminary design phase. A detailed design model is created to aid in the definition of the design.

The software detailed design model is a further refinement and expansion of the preliminary design
model. During preliminary design, operations are mapped to the object model from the dynamic
and functional models only for the architecturally significant classes. During detailed design, this
mapping is done for the rest of the classes, and the state diagrams of the dynamic model are
mapped to specific implementations. The segment event flow diagram establishes the dynamic
context of each of the subsystems in the segment.

By CDR, all diagrams are complete and consistent. The detailed design phase completeness
criteria are discussed below.

3.3.2.2.1 Detailed Object Models

During detailed design the control scheme reflected in the dynamic model must be translated into an
implementation. This process is discussed later when the dynamic model is addressed.

With the basic building blocks of the design in place, optimization of the object model is
performed. The existing representations are transferred, and details added, to support efficient
information access and use . The focal point is the object model, but all models are affected.
Optimization of the object model introduces efficiency into the software data structures and
algorithms. Several techniques are applied, as follows:

• Derived entities are added

• Derived entities, including attributes, operations, and classes, are introduced to establish
direct access paths and persistence of data values. Updating derived entities can cause

3-11 307-CD-001-003
329-CD-001-003

update anomalies. They may also introduce new dynamics to be modeled. A trade off
between implementation cost and efficiency gained is determined.

• Inheritance is verified and maximized

• The object model is analyzed and adjustments are made to maximize inheritance.
Adjustments include modifying argument lists, moving attributes and operations from a
subclass to a superclass, and abstracting common behavior from several classes to form a
superclass. As the level of nesting approaches ten, however, the complexity introduced to
the model outweighs the benefits of inheritance.

• Associations are designed

• During preliminary design a default implementation is selected for each kind of association.
During detailed design, each association is re-examined on the basis of multiplicity,
traversal characteristics, access characteristics, etc., to decide whether to implement that
specific association differently. It may be necessary to modify the object model -- usually
the attributes and the access operations or methods -- to reflect the changes.

• Coherence of entities are verified

All classes and operations on the object model are reviewed to ensure that the parts work
together toward a common goal. One indication that a class is not coherent is the number
of attributes, operations, and associations it contains. As a guideline, a class that has more
than ten attributes, more than ten associations, or more than twenty operations is divided.

• Data structures are refined

• Existing data structures are reviewed to determine modifications that might increase
algorithmic efficiency.

• By the end of detailed design, there are PDL representations for all nontrivial operations or
methods.

Class Definitions

The development of the inter-subsystem interfaces is closely coordinated between the subsystems.
During detailed design, the data content and identification of the protocol for all inter-subsystem
interactions is documented. State diagrams are developed, as applicable, for classes with
significant dynamic behavior. Classes that handle external events are considered to fall into that
category. State diagrams are developed for inter-subsystem interface class, as applicable. It is the
responsibility of the owning subsystem to develop the state diagram. The following criteria are
used for defining final representations of all classes:

• Class Satisfies Class Inspection Criteria

The class satisfies the Detailed Object Design Inspection checklist defined in the ECS
Software Inspection Process.

• Define All Attributes

3-12 307-CD-001-003
329-CD-001-003

The attributes providing the internal details of the classes are included. Attribute data types,
default values (if any) and constraints (if any) are shown. Derived attributes and their full
signatures also are included.

• Identify All Operations

Although it is not necessary to show all operations on the object models, all operations that
are intended to be implemented are defined. This includes access operations. An access
operation is one that reads or writes and attribute or association of an object or class. A
read and a write operation is defined for each attribute in each class, including instance
attributes, class attributes, and derived attributes. A read and a write operation is defined
for each association. Signature definitions of each operation are included in the object
model and data dictionary. The algorithms for update operations on derived attributes are
written. The access privilege is determined for each operation and the object model is
annotated. The access privilege specifies the scope of visibility of the particular feature.

• Operations Perform One Function

• Operations Size is Reasonable

As a guideline the average operations size is less than 100 LOC, nominally around 50
LOC.

Interface Classes

For each component, all external interfaces, interfaces to other subsystems, and interfaces to other
components are identified and captured. Interfaces are encapsulated within boundary (interface)
classes within the component. The attributes and operations of the interface classes are defined
such that all data (attributes, operations, or signals) to pass the component boundary are identified,
as are the operations needed to effect the transfers. This includes definitions of the full data
representations and methods.

Interface classes that are shared by subsystems must be clearly assigned to one or the other
subsystem for development. The class will appear in the models of both subsystems, but any
changes to the class must be done by the subsystem that is responsible for the class.

Reference the discussion on Interface Classes in section 3.3.1.2.1 for more detailed information
describing interface classes.

3.3.2.2.2 Detailed Dynamic Models

Scenarios

In the detailed design phase, all significant subsystem scenarios in which component's participate
are represented in the final dynamic model. For each component, the complete set of subsystem
scenarios is examined to identify those scenarios that involve the component. This is done by
looking at the subsystem threads and identifying each one that flows through the component.

Scenarios are developed to reflect all aspects of the use of each class, including error conditions. It
is likely that additional events, attributes, and even objects will be discovered. These scenarios

3-13 307-CD-001-003
329-CD-001-003

may reveal complex dynamic behavior that was not previously recognized, thus necessitating the
development of additional state diagrams.

A sequence of classes represents the scenario/thread. An event trace diagram is created for
component scenarios, as applicable. Event trace diagrams are examined to identify classes with
significant dynamic behavior. By examining all event traces, classes with significant dynamic
behavior are identified and are modeled via state diagrams, if applicable. Any entities (classes,
attributes, associations, etc.) that are found to be needed are added to the models.

State Diagrams

State diagrams are pertinent for those classes that have state. This means that an object of the class
can react differently to the same event depending on what has occurred to the object previously.
Usually, this amounts to only a relatively small percentage of the classes in the model.

State diagrams, when used, are reviewed for completeness and accuracy. Verification is
performed to ensure that all events sent to an object are received by the object, all scenarios are
handled, and all events are handled that can affect an object in each of its states. The following
checks are made for completeness and consistency at the component level:

• Sender and receiver for every event

• Input events from class to class match scenarios

• Event names are consistent

• All scenarios are handled

• All events which can affect the object, in any state, are handled

Control Scheme

During detailed design the control scheme reflected in the dynamic model must be translated into an
implementation. This is necessary because, unlike for object classes, most object-oriented
programming languages do not include constructs corresponding to states.

During design a control scheme is established to define the relationships among the system
components. This scheme not only defines the interfaces between components, but also the timing
requirements the components have to satisfy in response to an external event. There are three
control schemes that might be used: sequential, concurrent, and event driven. In sequential or
process driven control there is a single path of execution through the program. Control proceeds in
order, or branches according to values within the application. If data is needed from another
source, control is passed to the resource and then passed back to the requester along with the
requested data. In concurrent control, two or more paths of execution may overlap in time, but
each path proceeds in a sequential manner. The third scheme centralizes control in a control class
(event manager) that passes events to other classes. If the class performing the processing needs
additional input it returns control to the event manager. During preliminary design, internal and
external control flows are examined and grouped to form one or more components. A control
scheme is selected to implement each component based upon threads within the component, the
interactions among the threads, and the control scheme and response requirements established
during design. The three main control schemes are summarized as follows:

3-14 307-CD-001-003
329-CD-001-003

• Sequential control

The sequential control scheme begins with an initial state and identifies the main control
path(s) through a diagram that corresponds to the normally expected sequence(s) of events
stimulated by an external event(s) received by the class. The names of the states
encountered along this path are listed as a linear sequence. This becomes a sequence of
statements in the program.

Alternate paths that branch off the main path and rejoin it later are identified. These become
conditional statements in the program. Backward paths that branch off the main path and
rejoin it later are identified. These become loops in the program. If there are multiple
backward paths that do not cross, they become nested loops in the program. Backward
paths that do not nest can be implemented using GOTOs as a last resort.

The states and transitions that are left correspond to exception conditions. They can be
handled by techniques such as error subroutines, GOTOs, setting or testing of status flags,
or exception handling supported by the language (e.g., ADA).

• Concurrent control

Within the concurrent control scheme concurrent programming language tasks are initiated
inside the class by a method of the class. They also are initiated from outside the class by
an external control class.

For classes that execute concurrently with other classes of the component but which do not
contain concurrency themselves, the state diagram is translated as if for a sequential
process. These classes are the tasks identified during preliminary design. The input and
output events are examined to determine the priority, timing, and actions to occur in
response to events (control may proceed without waiting for response to a request). The
control pseudo code is adjusted to reflect the concurrent control requirements. A protocol
is defined for the acknowledgment and transmission of input and output events, and
incorporate the supporting control is incorporated into the pseudo code.

If there is inherent concurrency within the class, the concurrent control paths within the
state diagram are translated into separate tasks. If inter-task communication is required,
examine the events coming in and out of the tasks to determine the priority, timing, and
actions to occur in response to events. Adjust the control pseudo code to reflect the
concurrent control requirements. A protocol is defined for the acknowledgment and
transmission of input and output events, and the supporting control is incorporated into the
pseudo code. Control is provided for the initiation, inter-task communications, and
termination of tasks. If true concurrency cannot be supported by the tasks, modify the
pseudo code to reflect sequential execution of the tasks.

3-15 307-CD-001-003
329-CD-001-003

• Event-driven control

The event driven control scheme verifies that an appropriate class exists within the
component and adds it if it doesn't. If the control class is to manage the state transitions of
each class in the component, then the control class must possess information about the
current state, the possible successor states, and the events which the class may receive.

The state diagram is reviewed for all internal and external events. Those events that cause a
transition from one state to another are identified. A control algorithm is identified for each
state and represent the transition from a state as a message sent from the event manager.
The transitions into and out of states are consolidated and represented in a table. The table
includes any conditions that must be assessed if there is more than one possible state for a
transition.

The control class can be made responsible for event traffic between classes. If the threads
of control within a class are viewed as a processing state of the class, then this approach
could be considered to be similar to the previous approach where the event manger
determines the next state for all classes. In this case, however, the threads of execution
through an object instance are the responsibility of the class, and control is returned to the
event manager when the thread of execution is completed or when the executing thread
needs additional input. The state diagrams are translated as a sequential process.

A control algorithm is defined for each thread of control through the class, representing the
transition from all final states as a message sent to the event manager. A table for
transitions into and out of the threads is defined. Any conditions on the transition that must
be assessed to determine the next thread of execution are included. Also the
implementation of the event manager which was started in preliminary design is included.

If concurrent processing is needed, a consideration is made for directing inter-process
communication through the event manager. Request handling can be made the
responsibility of the event manager by requiring the event manager to retain the request
until the receiving class notifies the event manager that it is prepared to receive and respond
to a new request. Request handling can also be made the responsibility of the individual
classes by designing message queues which the classes could check periodically or just
prior to returning control to the event manager.

Validation is performed to ensure that control algorithms and the dynamic model correspond to the
optimized detailed design model. This includes defining control mechanisms to ensure the integrity
of derived entities, modifying algorithms to utilize the derived values, and representing separate
algorithms for the calculation of derived values. Also, it is ensured that control algorithms and
state transition diagrams reflect the events required to initiate new access operations as well as any
modifications to the inheritance structures of the object model.

The signature represented in the algorithm is checked against the corresponding state transition
diagram signature. It is also verified that the signature is correctly represented by all users of the
operation.

3-16 307-CD-001-003
329-CD-001-003

Control methods are modified to increase efficiency. For example, costly functional methods are
removed from loop structures where possible. The algorithm of the control method is modified to
reflect the efficiencies. If necessary, associated data structures are modified

3.3.2.2.3 Detailed Functional Models

Developing the detailed design model requires the validation of the preliminary design details of the
functional model, and the incorporation of additional functional detail. Note that functional models
are developed, as applicable.

The purpose of the functional model during detailed design is to specify the implementation
(method) for each operation for each class in the object model. The format of the functional model
depends upon the complexity of the operations. For trivial operations such as obtaining the value
of an attribute, the textual description of the operation may suffice. For complex operations, data
flow diagrams may be developed, but they should not be considered a mandatory part of the
functional model.

Additional functional detail during detailed design includes ensuring that there are sufficient
operations to handle all requirements. Input and output data is identified from events. During
detailed design, the methods (implementations) for operations are designed and a clear description
of the operation in textual form is included. Data Flow Diagrams are developed to aid in
understanding the method should the method be too complex to describe in textual terms. Often
when leveling operations processes in data flow diagrams, it is decided that some of the sub
operations are better placed on new classes which are then associated with the original class.
Should this occur, the object model and dynamic model are adjusted to be consistent with the
functional model.

The operations of each class are examined for ways to simplify, increase reuse, and encapsulate
functionality. Suboperations are broken out, operations are moved up or down an inheritance
hierarchy, or additional classes are created to encapsulate portions of an existing class' behavior.
When this happens, then the object model and dynamic model are adjusted to be consistent with the
functional model.

Signatures are completed from operations and sub operations. This includes all parameters and
their data types, default values (if any), and constraints (if any). It also includes return types, and
any default values and constraints.

Beginning with the functional descriptions developed during preliminary design, algorithms are
defined for each computational process. This definition process starts with the tops of
generalization hierarchies and works down to leaf classes. Verification of the signature, and
logical intent of each operation is performed as it applies to different classes, and changes to the
models are made where necessary. The algorithms are examined to determine possible error
conditions and then extended to provide recovery. The need to extend signatures to accommodate
the communication of error conditions is reviewed.

Verification is performed to ensure that the functional methods and the data flow diagrams
correspond to the optimized detail design model. This includes defining algorithms to calculate
derived or qualified entities, modifying algorithms to utilize the derived or qualified values rather

3-17 307-CD-001-003
329-CD-001-003

than calculating them, and representing a separate algorithm for the calculation of the derived value.
Verification also includes ensuring that algorithms exist for all new access operations, that they are
represented as operations on the object model, and that the functional model reflects any
modifications to inheritance structures of the object model. The assignments of responsibility and
the signatures of the operations are checked for consistency between the object model and any data
flow diagrams. Also, the signature is verified as being correctly represented by all users of the
operation. Existing functional methods are modified to increase efficiency. If necessary, the
associated data structures are modified.

3-18 307-CD-001-003
329-CD-001-003

3.3.2.2.4 Segment Modeling

The segment diagrams depict the integration and interface of the components at a segment-level of
abstraction. These diagrams may be either event flow diagrams or event trace diagrams. Their
objective is to ensure that the lower level dynamic models and scenarios at the subsystem level
properly integrate at the segment level to ensure full coverage and integration of the FOS.

3.3.2.2.5 Overall Consistency

The goal for detailed design is to produce a set of models that completely describe a solution to the
problem and that are consistent with one another.

Models are internally consistent and consistent with one another. Detailed design is an iterative
process in which the designer moves freely among the various models. As changes are made to
one model, the other models are checked and modified, as necessary, to ensure continued
consistency.

In order to ensure that the models are complete, L4 requirements are mapped to L3 requirements
and L4 requirements are mapped to classes. This provides an unbroken chain by which high level
requirements are broken down into requirements of ever increasing detail, while the corresponding
design models are refined and mapped back to the requirements.

The partitioning of the object model is re-examined to validate the component boundaries in light of
the completed definition of control and computational algorithms. Utility components are created
and adjustments are made to existing application and utility component boundaries as appropriate.

The above inspections cannot be completed without a complete data dictionary. The data dictionary
has entries for every modeling entity. It contains a clear description of each class, including the
class owner, and any assumptions on its membership or use. The data dictionary also describes
associations, attributes, and operations. A template is used, and the naming of entities is in
accordance with the Software Development Plan.

3.4 FOS Development

Included in this section are the development naming conventions, the dynamic model template, the
interface class description and FOS terms and concepts.

3.4.1 Naming Conventions

In the following examples 'Gr' represents the group (program, segment, or group) to which the
code belongs. 'Li' represents the library or service. As stated in section 4.5.4 of the Software
Development Plan (DID 308/DV2), the group and library acronyms are each two letters long and
each start with a capital letter followed by one lower case letter.

Underscores are not allowed to precede the group acronym or separate the group and library
acronyms. Underscores are allowed in MeaningfulName part of the name, but their use is
discouraged.

3-19 307-CD-001-003
329-CD-001-003

The group acronyms for FOS are as follows:

Ec ECS Common Code

Fo FOS Common Code

Fa Analysis

Fc Commanding

Fd Data Management

Fg Real-Time Contact Management

Fm Command Management

Fp Planning and Scheduling

Fr Resource Management

Ft Telemetry

Fu User Interface

The library/service names are created by each group. If a library gets too large, it may be divided
into multiple libraries. There needs to be coordination on library names between the groups, but
only for those libraries that are of a similar nature, such as Ut for Utilities. Here are some example
library names:

Ut Utilities

Tl Telemetry

Cv Current Value Table

3.4.1.1 Classes

All class names must start with the group and library in which they belong. This is followed by a
descriptive name of the class. All class definitions will reside in include files. This convention
will alleviate the problems of class collision across the program and with COTS library classes.
The convention will also allow programmers unfamiliar with the code to immediately identify
where a class is to be found. It is recommended that class member variables start with a lower case
"my" followed by a descriptive name starting with an upper case letter. It is recommended that
static member variables start with a lower case "our" followed by a descriptive name starting with
an upper case letter. This allows a programmer to distinguish between member variables and local
variables when inside member functions. Class member function names do not contain the
group and library prefix. Class member function names start with a capital letter. This will allow
for function overloading without confusing function names. The following is an example of a
class, member variable, and member function name:

GrLiMeaningfulName

myMeaningfulName // Member Variables

ourMeaningfulName // Static Member Variables

3-20 307-CD-001-003
329-CD-001-003

MeaningfulName // Member Functions

3.4.1.2 Functions Names

All function names must start with the group and library in which they belong. This is followed by
a descriptive name of the function. All functions will be prototyped and the prototypes will reside
in include files. This convention will alleviate the problems of function collision across the
program and with COTS library functions. The convention will also allow programmers
unfamiliar with the code to immediately identify where a function is found. The following is an
example of a function name:

GrLiMeaningfulName

In the case of a function that belongs to the common software (i.e. common across all segments),
the first 15 characters of a function's name must be unique, this includes the group and library
prefix. The requirement comes from compiler and linker restrictions from some of the supported
hardware platforms.

3.4.1.3 Enumerated Type Variables

All enumerated type variable names must start with the group followed by a capital E followed by
the library in which they belong. This is followed by a descriptive name of the enumerated type
variable. All enumerated types will reside in include files. This convention will alleviate the
problems of enumerated type variable collision across the program and with COTS library
enumerated types. The convention will also allow programmers unfamiliar with the code to
immediately identify where an enumerated type is to be found. The following is an example of an
enumerated type variable name:

GrELiMeaningfulName

3.4.1.4 External Variables

All external variable names must start with the group followed by a capital X followed by the
library in which they belong. This is followed by a descriptive name of the external variable. All
external variables will reside in include files. This convention will alleviate the problems of
external variable collision across the program and with COTS library external variables. The
convention will also allow programmers unfamiliar with the code to immediately identify where an
external variable is to be found. The following is an example of a external variable name:

GrXLiMeaningfulName

In the case of an external variable that belongs to the common software (i.e. common across all
segments), the first 15 characters of an external variable's name must be unique, this includes the
group and library prefix. The requirement comes from compiler and linker restrictions from some
of the supported hardware platforms.

3-21 307-CD-001-003
329-CD-001-003

3.4.1.5 Const

All const variable names must start with the group followed by a capital C followed by the library
in which they belong. This is followed by a descriptive name of the variable. All const variables
will reside in include files. This convention will alleviate the problems of redefinition of const
variables across the program and with COTS library const. The convention will also allow
programmers unfamiliar with the code to immediately identify where a const variable is to be
found. The following is an example of a const variable name:

GrCLiMeaningfulName

3.4.1.6 Number Define

All "#define" names must start with the group followed by a capital D followed by the library in
which they belong. This is followed by a descriptive name of the variable. All "#defines" will
reside in include files. This convention will alleviate the problems of redefinition of defines across
the program and with COTS library defines. The convention will also allow programmers
unfamiliar with the code to immediately identify where a "#define" is to be found. The use of
"#defines" is strongly discouraged in 'C++', a const is recommended instead. The following is an
example of a "#define" name:

GrDLiMeaningfulName

3.4.1.7 Macros

All macros must start with the group followed by a capital M followed by the library in which they
belong. This is followed by a descriptive name of the macro. All macros will reside in include
files. This convention will alleviate the problems of macro redefinition across the program and
with COTS library macros. The convention will also allow programmers unfamiliar with the code
to immediately identify where a macro is to be found. The use of macros is strongly discouraged
in 'C++', an inline function is recommended instead. The following is an example of a macro
name:

GrMLiMeaningfulName

3.4.1.8 Typedefs

All typedef names must start with the group followed by a capital T followed by the library in
which they belong. This is followed by a descriptive name of the typedef. All typedefs will reside
in include files. This convention will alleviate the problems of typedef collision across the program
and with COTS library typedefs. The convention will also allow programmers unfamiliar with the
code to immediately identify where a typedef is to be found. The following is an example of a
typedef:

GrTLiMeaningfulName

3-22 307-CD-001-003
329-CD-001-003

3.4.1.9 Local Variables, Function Calling Parameters, Structure
Members

Local variables, function calling parameters and structure members start with a lower case
descriptive name. The reason behind this is that names starting with upper case have special
meaning such as a const, #define, macro, typedef, extern, enum, function or a member function.
The following is an example of a local variable name:

meaningfulName

3.4.1.0 Source and Include File Names

'C++' source files should end in '.cxx', and 'C++' header files should end in '.h'. The following
is an example of 'C++' file names:

GrLiMeaningfulName.cxx

GrLiMeaningfulName.h

3.4.2 Dynamic Model Template

The following is a template of the dynamic model which is to be followed throughout FOS
segment development:

x.y.3 <subsystem> Dynamic Model

<Summarize the set of scenarios that will be defined in the dynamic model for the subsystem.

For example:>

The following are the Planning and Scheduling subsystem scenarios, which are defined in this
section.

Planning

Initial Scheduling

Final Scheduling

Late Changes

x.y.3.1 <scenario name> Scenario

x.y.3.1.1 <scenario name> Abstract

The scenario name should refer to the purpose of the scenario and should be descriptive of the
scenario. It should not be named according to the stimulus, the product (unless the generation of
the product is the purpose), nor should it be a synopsis of the processing.

The abstract should briefly summarize the scenario processing to set the stage -- should be 1-3
sentences. Note that x.y.3.1.3 provides the full description of the scenario. Also note that there
can be more than 1 event trace diagram per scenario. This is a judgment call, but if several event
traces are very similar (e.g., they have the same Summary Information) then they can be included
in the same scenario.

3-23 307-CD-001-003
329-CD-001-003

x.y.3.1.2 <scenario name> Summary Information

Interfaces:

<Explanation: Provide a list of all of the subsystems interfaces participating in the scenario.
It is assumed that the other subsystems participation in the scenario has been coordinated
with the leaders of the other subsystems, however, it is always best to unambiguously
document the common understandings. >

Stimulus:

<Explanation: The stimulus is the event which causes the initiation of the scenario. The
description of the stimulus and the conditions under which it occurs should be very
explicit.

The stimulus will appear on the event traces and the state diagrams, and will be evident in
the detailed description of the scenario.

When the stimulus is externally generated then it will appear in the "Interface With Other
Subsystems" section.>

Desired Response:

<Explanation: The desired response defines the successful completion of the scenario. The
desired response need not be a single event. It may be a concurrent set of events such as the
successful completion of updates to file#1, file#3, and the committing of updates to a
database.

Specify the criteria which must be met to consider the response successful.

Where the desired response is an output to another subsystem or segment then it will
appear in the "Interface With Other Subsystems" section.>

Participating Classes:

<Explanation: All classes defined in the object model(s) which participate in the scenario
should be listed (and only listed -- i.e., no text). The details of the contents of the class will
appear in the data dictionary.>

Pre-Conditions:

<Explanation: This section will provide any pre-conditions of the system, segment, and/or
subsystem which affect the successful completion of the scenario. For example, the system
will probably be required to be initialized via a successful cold start or warm restart, and
some subset of the databases will probably need to be available and consistent, and>

The state of the system, segment and subsystem will affect the ability to successfully
complete the scenario. An explicit exposition of the states will sensitize developers and
reviewers to the criteria for success.>

3-24 307-CD-001-003
329-CD-001-003

Post-Conditions:

<Explanation: The state of the system, segment and subsystem may be affected by the
state(s) which result from execution of a scenario. the ability to successfully complete the
scenario.

This section should provide any post-conditions which result from the execution of the
scenario.>

Example

Interfaces:

Data Management

User Interface

Stimulus:

Telemetry data sent from EDOS

Desired Response:

Decommutated, EU-converted, limit and delta checked telemetry parameters.

Participating Classes: <note: include just the object names; descriptions will be included in the data
dictionary>

FTMFrame

FTMController

Pre-Conditions:

Application telemetry software has been initiated.

Telemetry data base run-time tables have been loaded.

Logical string defined and established to receive telemetry data from external source.

Post-Conditions:

Data dropout condition identified for telemetry data.

x.y.3.1.3 Scenario Description

The scenario description should expose as much as is known about the scenario at the current level
of maturity. As much as possible the scenario should be a step by step traversal of the scenario.

The scenario should be accompanied by an event trace diagram(s) representing the scenario's path
through the system or subsystem. The event trace diagram(s) should be explicitly referenced here.
For example, Figure x.y.3.1.3-1.

x.y.3.1.4 State Transition Description

3-25 307-CD-001-003
329-CD-001-003

Where appropriate, provide the State Transition Diagrams for the subsystem and the objects under
consideration. Include the narrative text describing the state transition diagram. Note: it may make
more sense to include the state transition diagram and description in-line with the scenario
description. Since we have not done this before, use your judgment ... please provide
recommendations to the group, as applicable.

Wherever possible use the StP/OMT model components to document your work, and use the data
dictionary to provide details.

x.y.3.2 <scenario name> Scenario

x.y.3.n <scenario name> Scenario

3.4.3 OMT Naming Conventions

Because C++ computer source code will be generated from the OMT tool, the naming conventions
used must adhere to the ECS project naming conventions for interface classes. These conventions
are spelled out in the ECS Project Instruction manual, under the C++ coding standard section.

In the following examples, Gr represents the group (program, segment, or group) to which the
mode belongs, and Li represents the library or service.

The following naming conventions are to be used in the OMT tool:

ITEM CONVENTION

Class/Object GrLiMeaningfulName

Association MeaningfulName

Attributes (member variables):

member variables myMeaningfulName

static member variables ourMeaningfulName

enumerated types meaningfulName

Operation (member function) MeaningfulName

C and C++ Data Types

const GrCLiMeaningfulName

enumerated types GrELiMeaningfulName (external to a class)

#defines GrDLiMeaningfulName

typedefs GrTLiMeaningfulName

externs GrXLiMeaningfulName

Process (function) GrLiMeaningfulName

3-26 307-CD-001-003
329-CD-001-003

3.4.4 FOS Terms and Concepts

The following list provides descriptions of terms used with reference to the FOS. This list is
intended to aid in the clarification of these terms and to promote consistent usage of the terms
within the segment.

1) In the L4 requirements, object models, etc. reference should be made to telemetry items as
telemetry parameters as opposed to telemetry mnemonic or telemetry value. Telemetry
mnemonic and telemetry values are attributes of a telemetry parameter.

2) In the L4 requirements, object models, etc. reference should be included to both subsystem
and instrument. Subsystem pertains to the spacecraft subsystems (e.g., Command and
Data Handling subsystem) while instrument pertains to MODIS, CERES, etc.

3) The term 'replay' should be used to refer to the replaying of historical data from the FOS
archive, while the term 'playback' refers to the transfer of back-orbit telemetry from EDOS
to the EOC. The term 'recorder dump' refers to the transfer of back-orbit telemetry from
the spacecraft to EDOS.

4) The term 'derived parameter' should be used when referring to pseudo telemetry. Derived
parameters may be data base defined, software defined, or user defined (as in procedures
users can define). In the context of requirements, 'derived parameter' requirements should
explicitly reference that these are data base defined since we currently do not have any
software-defined derived parameters.

3.5 Configuration Management

The FOS will use the ECS Configuration Management Plan as a baseline for segment configuration
management.

4-1 307-CD-001-003
329-CD-001-003

4. FOS Release Development Plan

This section contains two matrices representing the phases of development by identifying FOS
scenarios and components. Both are intended to show a sequential flow of the development for
each release. The first matrix is a summary scenario, which serves as a high level snapshot of the
grouping of components within the FOS by release and build, and the activity phase in which these
components are performed. The second matrix is a more detailed representation of the FOS
scenario components utilized in the process of developing the segment. This second matrix
includes the set of FOS scenarios, which shows the sequence and interdependencies of functional
components within FOS scenarios that transcends individual FOS subsystems. This includes the
relative sequencing in which the FOS will be developed.

These matrices will continue to be refined and are included for review. These matrices will be
updated in the next release of the document.

Table 4-1. Scenario Summary Matrix (1 of 7)
Releas

e
Buil

d
Title Description Activity Phase Key Functionality

A 1 Internal
Connectivity

Communications
level interfaces

Support PDB Input

Screen
management(basic)

Command language

User authorization &
authentication

Event message
processing(basic)

Utilities (basic)

Scheduling Internal connectivity

NCC connectivity

Activity level
constraints

Receive and Validate
Loads (basic)

Real-Time String configuration

String
connection(default)

CCSDS packet
processing

4-2 307-CD-001-003
329-CD-001-003

Table 4-1. Scenario Summary Matrix (2 of 7)
Releas

e
Buil

d
Title Description Activity Phase Key Functionality

Telemetry displays
(data) pages

Command
Authorization

Command entry and
validation (basic)

Analysis Request
preprocessing

2 Basic telemetry
and command

Provide telemetry
and command paths,
and end to end
functionality

Support PDB validation and
ODB generation

Data store/fetch

DB maintenance
activities (basic)

Help

Procedure Builder

Events message
processing (complete)

Screen management
(enhanced)

Quick analysis tools

Scheduling Build BAP's (initial)

Scheduling
generation (s/c & inst.)

Uplink load generation
(basic)

Receive and validate
loads (enhanced)

I/F connectivity
-external

Generate ground
schedule

Schedule deviations

4-3 307-CD-001-003
329-CD-001-003

Table 4-1. Scenario Summary Matrix (3 of 7)
Releas

e
Buil

d
Title Description Activity Phase Key Functionality

Real-Time Command entry and
validation (enhanced)

Command generation

Command/Load
transmission(partial)

Command
authorization
(enhanced)

Command validation-
Prerequisite check

String
connection(user)

String configuration
notification (tlm & cmd)

Receive and store tlm
data

Display telemetry data
(partial) plots,
stripcharts,
spreadsheets

Telemetry processing
(partial)

Disseminate R/T data

Multiple real-time
contact monitoring

NCC R/T interface

Analysis Analysis request
processing

Telemetry history
processing(basic)

Dataset generation

Analysis Report
generation

Expert advisor

Statistics generation
(basic)

Data Archive

4-4 307-CD-001-003
329-CD-001-003

Table 4-1. Scenario Summary Matrix (4 of 7)
Releas

e
Buil

d
Title Description Activity Phase Key Functionality

B 1 Thread framework Support PDB validation and
ODB generation
(complete)

Data base reporting
(basic)

Preplanned command
procedure execution

Advanced user
interface functions

Scheduling FDF planning aids
transfer

I/F connectivity -
external (complete)

Activity and command
level constraint check

Build and validate load
contents

Schedule uplink loads

Maintain uplink
catalogs

TDRS scheduling

Display buffers and
tables

Real-Time Command privilege
change request
processing

Command request
processing

Ground script
command processing

Command receipt
verification

Command verification-
telemetry

4-5 307-CD-001-003
329-CD-001-003

Table 4-1. Scenario Summary Matrix (5 of 7)
Releas

e
Buil

d
Title Description Activity Phase Key Functionality

Load validation and
transmission
(complete)

Command reference
processing (memory
map, GRI)

Telemetry processing
(complete)

Telemetry history
processing (detailed)

Ground telemetry
processing (partial)

Telemetry monitoring
(partial)

Display telemetry data
(complete) - strip
charts, graphs

Replay
processing(dedicated
/shared)

Microprocessor
memory dump
processing (partial)

Spacecraft attitude
data processing

Merge telemetry data

Analysis Telemetry history
processing

Statistics generation
(complete)

State changes
processing

Report generation
(customized)

Standing Orders
processing

Clock correlation
(partial)

B 2 Full FOS

4-6 307-CD-001-003
329-CD-001-003

Table 4-1. Scenario Summary Matrix (6 of 7)
Releas

e
Buil

d
Title Description Activity Phase Key Functionality

Support E-Mail

User customization

Data base reporting
(complete)

Data archive and
retrieval

Report browser/editor

Screen management
(complete)

Data base
maintenance activities
(complete)

Scheduling Long term inst. plan
receipt

Generate timeline

Update ground
schedule

Uplink load generation
(complete)

Schedule "what-if"
plans

Generate patch load

Generate load reports

Real-Time Ground-tlm
processing(complete)

System Failure
recovery

Command
configuration
processing

String reconfiguration

Backup string
configuration

String termination

Configuration
monitoring (h/w, s/w)

Telemetry monitoring
(complete)

4-7 307-CD-001-003
329-CD-001-003

Table 4-1. Scenario Summary Matrix (7 of 7)
Releas

e
Buil

d
Title Description Activity Phase Key Functionality

Load verification

Adjust telemetry
parameters

Downlink ordered
report processing
(complete)

S/C state check
processing

Microprocessor
memory dump
processing (complete)

Ground telemetry
processing (complete)

Analysis Triggers processing

Clock correlation
(complete)

Solid state recorder
processing

Apply special
algorithms

S/C activity log
processing

Launch

4-8 307-CD-001-003
329-CD-001-003

Table 4-2. FOS Scenario Matrix (1 of 31)
Activity Phase Thread Component Subsyste

m
Releas

e
Releas
e A/B
Build

Infrastructure -
Comm

Communications Interprocess Comm CSS A 1

Multicast CSS A 1

Security ISS A 1

Name Service CSS A 1

Network ISS A 1

Comm I/F to SDPS DMS A 2

Authentication CSS A 1

Authorization CSS A 1

Time CSS A 1

Performance MSS B 1

Planning MSS B 1

CM MSS A 1

IST Management FOS B 2

Support - DMS Data Base Tlm PDB Input DMS A 1

Tlm PDB Validation DMS A 2

Tlm DB Generation DMS A 2

Maintain Tlm ODB
Time Window

DMS B 1

Cmd PDB Input DMS A 1

Cmd PDB Validation DMS A 2

Cmd DB Generation DMS A 2

Activity Input DMS A 1

Activity Validation DMS A 2

Activity Generation DMS A 2

Constraint Input DMS B 1

Constraint Validation DMS B 1

Constraint Generation DMS B 1

Data Base Reporting
(Basic)

DMS B 1

Data Base Reporting
(Detailed)

DMS B 2

Data Base Edit DMS A 2

PDB Backup DMS B 2

4-9 307-CD-001-003
329-CD-001-003

Table 4-2. FOS Scenario Matrix (2 of 31)
Activity Phase Thread Component Subsyste

m
Releas

e
Releas
e A/B
Build

PDB Restore DMS B 2

File Management Data Store DMS A 2

Data Fetch DMS A 2

Data CM DMS B 1

Data Backup DMS B 1

Data Restore DMS B 2

Data Mover FUI B 2

Display File Mgt FUI B 1

Long-Term Archive to
SDPS

DMS B 2

Long-Term Restore
from SDPS

DMS B 2

Events Events API and DB DMS A 1

Events Msg
Generation Basic

DMS A 1

Events Msg
Generation Complete

DMS A 2

Display Events FUI A 1

Quick Msg FUI B 2

Archive Events DMS A 2

Event History Request FUI B 1

Retrieve Events DMS B 2

Event History Display FUI B 2

Support - User
Interface

General User Authentication CSS A 1

User Authentication
Display

FUI B 1

Status Window FUI A 1

Screen Management FUI A 1

4-10 307-CD-001-003
329-CD-001-003

Table 4-2. FOS Scenario Matrix (3 of 31)
Activity Phase Thread Component Subsyste

m
Releas

e
Releas
e A/B
Build

Control Window
Manip. (partial)

FUI A 1

Control Window
Manip. (complete)

FUI A 2

User Customization FUI B 2

Window
Requirements/Snap

FUI B 2

Directive Input Directive Language FUI A 1

Procedure Builder FUI A 2

Procedure Control FUI A 2

Request Preplanned
Command Procedure

FUI A 2

Generate Preplanned
Command Procedure

FUI A 2

Validate Preplanned
Command Procedure

CMS B 2

Preplanned Command
Procedure Status

FUI B 2

Tools Time Select- (partial) FUI A 1

Time Select-
(completel)

FUI A 2

Document Reader FUI B 2

E-Mail FUI B 2

Help - (partial) FUI A 2

Help - (complete) FUI B 2

Room Builder FUI A 1

Display Builder - alpha FUI A 2

Display Builder - alpha
(conts.)

FUI A 2

Display Builder -
graph/tables

FUI B 1

Display Builder -
schematics

FUI B 2

Quick Analysis FUI A 2

4-11 307-CD-001-003
329-CD-001-003

Table 4-2. FOS Scenario Matrix (4 of 31)
Activity Phase Thread Component Subsyste

m
Releas

e
Releas
e A/B
Build

Subsystem Filter FUI A 1

Scheduling Long-Term
Planning

Receive LTIP PAS B 2

Receive LTSP PAS B 2

Gen Long-Term S/C
Op Plan

PAS A 2

Build/Define Activities
in BAPs

PAS A 2

Gen Instrument BAPs PAS A 2

Initial Scheduling FDF Interface
Connectivity

PAS B 1

Receive FDF Planning
Aids

PAS B 1

Send FDF Planning
Aids to SDPS

PAS B 2

Send FDF Planning
Aids to ASTER

PAS B 1

Schedule Instrument
BAPs

PAS A 2

Schedule Spacecraft
Subsystem BAPs

PAS B 1

Schedule Spacecraft
Subsystem Activities

PAS A 2

Generate Timeline PAS B 2

Print Postscript
Timeline

PAS B 2

ASTER Interface
Connectivity

PAS A 2

Receive ASTER
Instrument Activities

PAS A 2

Check Activity Level
Constraints

PAS B 1

Schedule Instrument
Activity Deviations

PAS B 1

4-12 307-CD-001-003
329-CD-001-003

Table 4-2. FOS Scenario Matrix (5 of 31)
Activity Phase Thread Component Subsyste

m
Releas

e
Releas
e A/B
Build

Schedule Spacecraft
Subsystem Activity
Deviations

PAS B 1

Receive ASTER
Instrument Activity
Deviations

PAS B 1

NCC Interface
Connectivity (Basic)

PAS A 1

NCC Interface
Connectivity
(Complete)

PAS B 1

Create TDRSS
Contact Schedule

PAS B 1

Submit TDRSS
Contact Requests to
NCC

PAS B 1

Receive Accepted
TDRSS Contact
Requests

PAS B 1

Receive Rejected
TDRSS Contact
Requests

PAS B 1

Reschedule Rejected
TDRSS Contact
Requests

PAS B 2

Final Scheduling Schedule Instrument
Activity Deviations

PAS B 1

Schedule Spacecraft
Subsystem Activity
Deviations

PAS B 1

Generate Timeline PAS B 2

Print Postscript
Timeline

PAS B 2

Receive ASTER
Instrument Activity
Deviations

PAS B 1

4-13 307-CD-001-003
329-CD-001-003

Table 4-2. FOS Scenario Matrix (6 of 31)
Activity Phase Thread Component Subsyste

m
Releas

e
Releas
e A/B
Build

Check Activity Level
Constraints

PAS B 1

Schedule MP Load
Uplink Activities

PAS B 1

Schedule Flight
Software Uplink
Activities

PAS B 1

Schedule RTS Uplink
Activities

PAS B 1

Schedule Table Load
Uplink Activities

PAS B 1

Daily Scheduling Set Target Day (TD)
Boundaries

PAS A 2

Freeze DAS Activities PAS A 2

Eliminate Conflicting
Activities

PAS B 2

Reschedule Deleted
Activity

PAS B 2

Generate Timeline PAS B 2

Print Postscript
Timeline

PAS B 2

Expand Activity CMS A 2

Check Command-level
Constraints

CMS B 1

Build ATC Load for TD
from DAS

CMS A 2

Generate ATC Uplink
Load (Basic)

CMS A 2

Generate ATC Uplink
Load (Complete)

CMS B 2

Determine Uplink
Window

CMS B 1

Schedule ATC Uplink
Activities

PAS B 1

4-14 307-CD-001-003
329-CD-001-003

Table 4-2. FOS Scenario Matrix (7 of 31)
Activity Phase Thread Component Subsyste

m
Releas

e
Releas
e A/B
Build

Add ATC Load Uplink
to Ground Schedule

CMS B 1

Update Ground
Schedule

CMS A 2

Generate Integrated
Report

CMS B 2

Late Changes I
(Load generated -
not uplinked)

Receive Late Change
Request

PAS B 1

Check Activity Level
Constraints

PAS B 1

Eliminate Conflicting
Activities

PAS B 2

Generate Timeline PAS B 2

Print Postscript
Timeline

PAS B 2

Expand Activity CMS A 2

Check Command-level
Constraints

CMS B 1

Build ATC Load for TD
from DAS

CMS A 2

Generate ATC Uplink
Load (Basic)

CMS A 2

Generate ATC Uplink
Load (Complete)

CMS B 2

Determine Uplink
Window

CMS A 2

Schedule ATC Uplink
Activities

PAS B 1

Add ATC Load Uplink
to Ground Schedule

CMS B 1

4-15 307-CD-001-003
329-CD-001-003

Table 4-2. FOS Scenario Matrix (8 of 31)
Activity Phase Thread Component Subsyste

m
Releas

e
Releas
e A/B
Build

Add ATC stored
command verification
to ground schedule

CMS B 2

Update Ground
Schedule

CMS A 2

Generate Integrated
Report

B 2

Late Changes II
(Load generated
and uplinked)
(patch)

Receive Late Change
Request

PAS B 2

Check Activity Level
Constraints

PAS B 1

Eliminate Conflicting
Activities

PAS B 2

Generate Timeline PAS B 2

Print Postscript
Timeline

PAS B 2

Expand Activity CMS A 2

Check Command-level
Constraints

CMS B 1

Build ATC Partial Load
from DAS

CMS B 2

Generate ATC Uplink
Load (Basic)

CMS B 2

Generate ATC Uplink
Load (Complete)

CMS B 2

Determine Uplink
Window

CMS B 2

Schedule ATC Partial
Load Uplink Activities

PAS B 2

4-16 307-CD-001-003
329-CD-001-003

Table 4-2. FOS Scenario Matrix (9 of 31)
Activity Phase Thread Component Subsyste

m
Releas

e
Releas
e A/B
Build

Add ATC Load Uplink
to Ground Schedule

CMS B 2

Add ATC stored
command verification
to ground schedule

CMS B 2

Update Ground
Schedule

CMS B 2

Generate Integrated
Report

CMS B 2

What-If Initiate What-If Plan PAS B 2

Check Activity Level
Constraints

PAS B 1

Expand Activity CMS A 2

Check Command
Level Constraints

CMS B 1

Schedule What-If PAS B 2

Load
Management

Receive Instrument
Microprocessor Load
Contents from SCF

FUI A 2

Validate MP Load
Contents ID

FUI A 2

Generate
Microprocessor Uplink
Load

CMS A 2

Maintain
Microprocessor
Catalog

CMS B 1

Receive Flight
Software Load
Contents from SDVF

FUI B 1

4-17 307-CD-001-003
329-CD-001-003

Table 4-2. FOS Scenario Matrix (10 of 31)
Activity Phase Thread Component Subsyste

m
Releas

e
Releas
e A/B
Build

Validate Flight
Software Load
Contents ID

FUI B 1

Generate Flight
Software Uplink Load

CMS B 1

Maintain Flight
Software Catalog

CMS B 1

Receive Relative Time
Sequence Load
Contents

FUI A 2

Validate RTS Load
Contents ID

FUI A 2

Load Manager FUI A 2

Build RTS Load
Contents

FUI A 2

Validate RTS Load
Content

CMS B 1

Generate RTS Uplink
Load

CMS A 2

Maintain RTS Uplink
Load Catalog

CMS B 1

Receive Table Load
Contents

FUI A 2

Validate Table Load
Contents ID

FUI A 2

Build Table Load
Contents

FUI A 2

Validate Table Load
Contents

CMS B 1

Generate Table Uplink
Load

CMS A 2

Generate FDF Table
Loads

CMS B 2

Maintain Table Uplink
Load Catalog

CMS B 1

Display ATC Buffer FUI B 1

Display RTS Buffer FUI B 1

4-18 307-CD-001-003
329-CD-001-003

Table 4-2. FOS Scenario Matrix (11 of 31)
Activity Phase Thread Component Subsyste

m
Releas

e
Releas
e A/B
Build

Generate Load
Reports

CMS B 2

Real-Time
Operations

Real-Time System
Initialization

Rqst Start-up
Configuration Table

RMS A 1

Create Default Strings RMS A 1

User Connection RMS A 1

String Initialization Request for new
String

FUI A 2

User Requested
String Creation

RMS A 2

Notify FUI of
Configuration Change

RMS A 2

Configure CMD RMS A 1

Configure TLM RMS A 1

Configure RCM RMS A 1

String
Reconfiguration

String Reconfiguration
Request

FUI B 2

Update String
Configuration

RMS B 2

Notify FUI of
Configuration Change

RMS B 2

Notify CMD of
Configuration Change

RMS B 2

Notify TLM of
Configuration Change

RMS B 2

String
Termination

String Termination RMS B 2

4-19 307-CD-001-003
329-CD-001-003

Table 4-2. FOS Scenario Matrix (12 of 31)
Activity Phase Thread Component Subsyste

m
Releas

e
Releas
e A/B
Build

Transfer Mission
Critical Activity

RMS B 2

Termination of RTS RMS B 2

Configuration
Monitoring

Monitor Hardware RMS B 2

Monitor Software RMS B 2

Display
Hardware/Software
Status (partial)

FUI A 2

Display
Hardware/Software
Status (complete)

FUI B 1

Connection
Support

User Authorization &
Authentication

CSMS A 1

Real-Time Monitoring
Request

FUI A 1

String Creation RMS A 1

String Connection RMS A 1

Managing
Command
Privilege

CMD Privilege Change
Request

FUI A 1

Update CMD Privilege
ACL

RMS A 1

CMD Authority CMD A 1

Managing
Configuration
Privilege

Config Privilege
Change Request

FUI B 2

Update ConFig
Privilege ACL

RMS B 2

Spacecraft
Commanding

Command
Authorization

Command
Authorization Request

FUI A 1

4-20 307-CD-001-003
329-CD-001-003

Table 4-2. FOS Scenario Matrix (13 of 31)
Activity Phase Thread Component Subsyste

m
Releas

e
Releas
e A/B
Build

Command
Authorization Approval

RMS A 1

Command
Authorization Denial

RMS A 1

Notify CMD of new
Commander

RMS A 1

Command
Configuration

Command
Configuration Request

FUI B 1

Command
Configuration
Modification

RMS B 2

Command Modes -
FOP Configuration

CMD B 2

Command Modes -
Prereq Check
Configuration

CMD B 2

Ground Script
Commanding

Ground Script
Generate Request

FUI A 2

Generate ground
script

CMS A 2

Display Historical
Ground Script

FUI B 2

Ground Script Control
(partial)

FUI A 2

Ground Script Control
(complete)

FUI B 1

Command Processing FUI A 1

Command Validation -
DB Lookup

CMD A 1

4-21 307-CD-001-003
329-CD-001-003

Table 4-2. FOS Scenario Matrix (14 of 31)
Activity Phase Thread Component Subsyste

m
Releas

e
Releas
e A/B
Build

Command Validation -
Prereq State Check

CMD A 2

Command Criticality CMD A 2

Command Generation
(Build CCSDS packet)

CMD A 2

Command
Transmission to EDOS

CMD A 2

Command Verification
- Receipt Verification

CMD B 1

Command Verification
- Telemetry Verification

CMD B 2

Manual
Commanding

Operator Command
Entry

FUI A 1

Command Processing FUI A 1

Accept CMD Directive CMD A 1

Command Validation -
DB Lookup

CMD A 1

Command Validation -
Prereq State Check

CMD A 2

Command Criticality CMD A 2

Command Generation
(Build CCSDS packet)

CMD A 2

EBnet Interface
Connectivity

ISS A 1

4-22 307-CD-001-003
329-CD-001-003

Table 4-2. FOS Scenario Matrix (15 of 31)
Activity Phase Thread Component Subsyste

m
Releas

e
Releas
e A/B
Build

Command
Transmission to EDOS

CMD A 2

Command Verification
- Receipt Verification

CMD B 1

Command Verfication -
Telemetry Verification

CMD B 2

ASTER Command
Notification

CMD B 2

Command
Requests

Command Request
Entry

FUI B 2

Command Request
Submission

FUI B 2

EOC Notification FUI B 2

Command Request
Evaluation

FUI B 2

Command Request
Accepted

FUI B 2

Originator Notification FUI B 2

Command Request
Processing

FUI B 2

Stored Cmd
Verification

Ground Script Control
(partial)

FUI A 2

Ground Script Control
(complete)

FUI B 1

Command Processing FUI A 1

Command Validation -
DB Lookup

CMD A 1

4-23 307-CD-001-003
329-CD-001-003

Table 4-2. FOS Scenario Matrix (16 of 31)
Activity Phase Thread Component Subsyste

m
Releas

e
Releas
e A/B
Build

Command Verification
- Telemetry Verification

CMD B 2

Load Processing Operator Command
Request Entry

FUI B 1

Command Processing FUI A 1

Load Command
Validation

CMD B 1

Load Criticality CMD B 2

Load Transmission CMD B 1

Load Verification CMD B 2

Telemetry Real-Time
Monitoring

String Connection
Request

FUI A 1

String Connection RMS A 1

Display Status Window FUI A 1

Tlm Proc - CCSDS
Packet Processing

TLM A 1

Tlm Proc - Decom TLM A 2

Tlm Proc - Decom
Health & Safety

 TLM A 2

Tlm - Decom
Housekeeping

TLM A 2

Tlm - Decom
Houskeeping (cont.)

TLM A 2

Tlm Proc - EU
Conversions

TLM A 2

Tlm Proc - Static TLM A 2

Tlm Proc - Quality
Flags

TLM B 1

Tlm Proc - Context
Switches

TLM B 1

4-24 307-CD-001-003
329-CD-001-003

Table 4-2. FOS Scenario Matrix (17 of 31)
Activity Phase Thread Component Subsyste

m
Releas

e
Releas
e A/B
Build

Tlm Proc - Selective
Decom

TLM B 2

Tlm Data Dropouts -
Event

TLM A 2

Tlm Data Dropouts -
Static

TLM A 2

Archive Telemetry TLM A 2

Dump Processing TLM B 1

Tlm Proc - Quality
Flags

TLM B 1

Processing Derived
Parameters

TLM B 2

EDOS CODAs
Real Time

Receive CODAs RCM B 1

Store CODAs RCM B 1

Process CODAs RCM B 1

Generate CODA
Statistics

ANA B 2

Adjusting Limit Values TLM B 2

Adjust EU parameters TLM B 2

Selecting Limit Set
(context switch)

TLM B 1

Selecting Limit Set
(user)

TLM B 2

 Parameter Server TLM A 1

Displaying Telemetry
Data

FUI A 1

Displaying Telemetry
Plots

FUI A 2

Displaying Telemetry
Plots (conts.)

FUI A 2

4-25 307-CD-001-003
329-CD-001-003

Table 4-2. FOS Scenario Matrix (18 of 31)
Activity Phase Thread Component Subsyste

m
Releas

e
Releas
e A/B
Build

Displaying Telemetry
Strip Charts

FUI B 1

Displaying
Spreadsheets

FUI A 2

Displaying Telemetry
Schematics

FUI B 1

NCC Real Time NCC Communications
Test Message

RCM A 2

NCC GCMRS RCM A 2

ACK/NACK
Processing

RCM A 2

NCC Performance
Data

RCM B 1

Archive NCC Data DMS B 1

DSN ODMS RCM B 2

Multiple Real-
Time Contacts
Monitoring

String Connection
Request

FUI A 2

Display Telemetry
Information Window

FUI A 2

String Connections RMS A 1

Processing Multiple
Telemetry Streams

RMS A 1

Storing Multiple
Telemetry Streams

TLM B 1

Displaying Multiple
Source Telemetry

FUI B 2

Monitoring a
Dedicated Replay

Replay Controller FUI B 1

Adjusting Replay
Period

DMS B 2

4-26 307-CD-001-003
329-CD-001-003

Table 4-2. FOS Scenario Matrix (19 of 31)
Activity Phase Thread Component Subsyste

m
Releas

e
Releas
e A/B
Build

Adjusting Replay Rate DMS B 2

Providing Telemetry
Config Information

RMS B 1

Loading Selected
Telemetry Data Base

TLM B 1

Request Replay Data RMS B 1

Telemetry
Configuration Request

FUI A 2

Adjusting Parameter
Selection

TLM B 2

Adjusting Limit Values TLM B 2

Adjust EU parameters TLM B 2

Retrieving History Data
(Basic)

DMS A 2

Metering History Data DMS B 1

Processing History
Telemetry

TLM A 2

Processing Derived
Parameters

TLM B 2

Analyzing History
Telemetry

ANA B 2

Displaying Replay
Telemetry Pages

FUI A 1

Displaying Replay
Telemetry Plots

FUI A 2

Displaying Replay
Telemetry Strip Charts

FUI B 1

Displaying Replay
Telemetry Schematics

FUI B 1

4-27 307-CD-001-003
329-CD-001-003

Table 4-2. FOS Scenario Matrix (20 of 31)
Activity Phase Thread Component Subsyste

m
Releas

e
Releas
e A/B
Build

Configuring
Telemetry
Processing

Determining
Current/Default Tlm
Config

RMS A 1

Providing Telemetry
Config Information

RMS A 1

Displaying Config
Information

FUI A 1

Loading Selected
Telemetry Data Base

TLM A 2

Configuring Mode
(mirrored)

TLM A 2

Configuring Mode
(tailored)

TLM B 2

Selecting Telemetry
Stream

TLM A 1

Telemetry
Configuration Request

FUI A 2

Telemetry
Configuration
Modification

RMS B 2

Adjusting Parameter
Selection

TLM B 2

Adjusting Limit Values TLM B 2

Adjust EU parameters TLM B 2

Selecting Limit Set
(context switch)

TLM B 1

Selecting Limit Set
(user)

TLM B 2

Adjusting Derived
Param Processing
Rate

TLM B 2

4-28 307-CD-001-003
329-CD-001-003

Table 4-2. FOS Scenario Matrix (21 of 31)
Activity Phase Thread Component Subsyste

m
Releas

e
Releas
e A/B
Build

Enabling/Disabling
Telemetry Archiving

TLM B 2

System
Generated
statistics for
Ground-
Telemetry Data
(NCC, EDOS)

Receive and Store
Ground Telemetry (GT)
Data

RCM B 2

Provide GT Data RCM B 2

Compute and update
GT statistical data

ANA B 2

Store GT Statistical
Data

DMS B 2

Collecting S/C
Attitude
Information

Attitude Data Subset
Request

FUI B 1

Collecting Attitude
Data for FDF

TLM B 1

Send Attitude Data to
FDF

TLM B 1

Ingest Playback DMS B 2

Tlm Merge Tlm Merge DMS B 2

Archive Tlm DMS B 2

Providing Telemetry
Config Information

RMS B 1

Loading Selected
Telemetry Data Base

TLM B 1

Request Replay Data RMS B 1

Telemetry
Configuration Request

RMS B 1

Adjusting Parameter
Selection

TLM B 2

Adjusting Limit Values TLM B 2

4-29 307-CD-001-003
329-CD-001-003

Table 4-2. FOS Scenario Matrix (22 of 31)
Activity Phase Thread Component Subsyste

m
Releas

e
Releas
e A/B
Build

Adjust EU parameters TLM B 2

Retrieving History Data
(Detailed)

DMS B 1

Metering History Data DMS B 1

Processing History
Telemetry

TLM A 2

Processing Derived
Parameters

TLM B 2

Generate Tlm Statistics ANA B 2

Analysis Tlm History Build Analysis
Request (History)

FUI A 2

Queue Manager DMS B 1

Request Manager ANA A 2

Generate DB ID DMS A 2

Create Parameter List
from History Request

ANA A 2

Providing Telemetry
Config Information

RMS B 1

Loading Selected
Telemetry Data Base

TLM B 1

Request Replay Data RMS B 1

Telemetry
Configuration Request

RMS B 1

Adjusting Parameter
Selection

TLM B 2

Adjusting Limit Values TLM B 2

Adjust EU parameters TLM B 2

Retrieving History Data
(Basic)

DMS A 2

4-30 307-CD-001-003
329-CD-001-003

Table 4-2. FOS Scenario Matrix (23 of 31)
Activity Phase Thread Component Subsyste

m
Releas

e
Releas
e A/B
Build

Processing History
Telemetry

TLM A 2

Processing Derived
Parameters

TLM B 2

Build Dataset ANA A 2

Generate Carry-Out ANA A 2

Apply Request to
Dataset

FUI A 2

Display or Print History
Data

FUI B 1

Store Request
(optional)

DMS A 2

Historical Request
Which crosses
Data Base
Boundaries

Build History Request FUI A 2

Queue Manager DMS B 1

Request Manager ANA A 2

Generate DB Ids DMS A 2

Partition request ANA B 1

Build first set of
Parameter List

ANA B 1

Providing Telemetry
Config Information

RMS B 1

Loading Selected
Telemetry Data Base

TLM B 1

Request Replay Data RMS B 1

Telemetry
Configuration Request

RMS B 1

Adjusting Parameter
Selection

TLM B 2

Adjusting Limit Values TLM B 2

Adjust EU parameters TLM B 2

4-31 307-CD-001-003
329-CD-001-003

Table 4-2. FOS Scenario Matrix (24 of 31)
Activity Phase Thread Component Subsyste

m
Releas

e
Releas
e A/B
Build

Retrieving History Data
(Basic)

DMS A 2

Processing History
Telemetry

TLM A 2

Processing Derived
Parameters

TLM B 2

Build Dataset ANA A 2

Generate Carry-Out ANA A 2

Build additional
Parameter List

ANA B 1

Compute and Update
Statistical data

ANA A 2

System
Generated
Statistics for FDF
Data

Receive and store FDF
Data

DMS B 1

Compute and update
FDF statistical data

ANA B 1

Store FDF Statistics DMS B 1

User Selected
Statistics

Prepare Telemetry
Statistics Request

FUI A 2

Queue Manager DMS B 1

Request Manager ANA A 2

Generate DB Id DMS A 2

Build Parameter List
from request

ANA A 2

Providing Telemetry
Config Information

RMS B 1

Loading Selected
Telemetry Data Base

TLM B 1

Request Replay Data RMS B 1

Telemetry
Configuration Request

RMS B 1

Adjusting Parameter
Selection

TLM B 2

4-32 307-CD-001-003
329-CD-001-003

Table 4-2. FOS Scenario Matrix (25 of 31)
Activity Phase Thread Component Subsyste

m
Releas

e
Releas
e A/B
Build

Adjusting Limit Values TLM B 2

Adjust EU parameters TLM B 2

Retrieving History Data
(Basic)

DMS A 2

Processing History
Telemetry

TLM A 2

Processing Derived
Parameters

TLM B 2

Compute and Update
Statistical Data

ANA A 2

Algorithm
Processing

Receive Algorithm
information from user

FUI B 2

Designer Algorithm ANA B 2

Prepare Request for
Algorithm Processing

FUI B 2

Queue Manager DMS B 1

Request Manager ANA A 2

Providing Telemetry
Config Information

RMS B 1

Loading Selected
Telemetry Data Base

TLM B 1

Request Replay Data RMS B 1

Telemetry
Configuration Request

RMS B 1

Adjusting Parameter
Selection

TLM B 2

Adjusting Limit Values TLM B 2

Adjust EU parameters TLM B 2

Retrieving History Data
(Basic)

DMS A 2

4-33 307-CD-001-003
329-CD-001-003

Table 4-2. FOS Scenario Matrix (26 of 31)
Activity Phase Thread Component Subsyste

m
Releas

e
Releas
e A/B
Build

Processing History
Telemetry

TLM A 2

Processing Derived
Parameters

TLM B 2

Store Statistical Data DMS A 2

Apply algorithm ANA B 1

Build dataset ANA A 2

Generate Carry-Out ANA A 2

Display or Print Data FUI B 2

State Change
Statistics

State Changes
Generation

ANA B 1

State Changes
Archive

ANA B 1

Request State
Change Reports

FUI B 1

State Changes
Dataset Gen

ANA B 1

State Changes Report
Gen

ANA B 1

Display State Changes
Report

FUI B 1

Time Ordered
Downlink Report

Prepare Downlink
Report Request

ANA A 2

Queue Manager DMS B 1

Request Manager ANA A 2

Generate DB Id DMS A 2

Providing Telemetry
Config Information

RMS B 1

Loading Selected
Telemetry Data Base

TLM B 1

Request Replay Data RMS B 1

Telemetry
Configuration Request

RMS B 1

4-34 307-CD-001-003
329-CD-001-003

Table 4-2. FOS Scenario Matrix (27 of 31)
Activity Phase Thread Component Subsyste

m
Releas

e
Releas
e A/B
Build

Adjusting Parameter
Selection

TLM B 2

Adjusting Limit Values TLM B 2

Adjust EU parameters TLM B 2

Retrieving History Data
(Basic)

DMS A 2

Processing History
Telemetry

TLM A 2

Processing Derived
Parameters

TLM B 2

Build Dataset (Time
Ordered)

ANA A 2

Generate Carry-Out ANA A 2

Generate Report ANA A 2

Display or Print report FUI A 2

Parameters-out-
of-Limits Report

Prepare Parameters-
out-of-limits request

FUI A 2

Provide out-of-limits
data from DMS

ANA B 2

Generate out-of-limits
Report

ANA A 2

Display or Print Report FUI A 2

Customized User
Reports

Report Template
Builder

FUI B 1

Queue Manager DMS B 1

Generated DB ID DMS A 2

Tlm Dataset
Preparation (build
dataset)

ANA A 2

Generate Carry-Out ANA A 2

4-35 307-CD-001-003
329-CD-001-003

Table 4-2. FOS Scenario Matrix (28 of 31)
Activity Phase Thread Component Subsyste

m
Releas

e
Releas
e A/B
Build

Report Generation
(partial)

FUI A 1

Report Generation
(complete)

FUI A 2

Report Browser/Editor FUI B 2

Standing Orders Request Standing
Order

FUI B 1

Review Standing
Order

FUI B 1

Initiate Standing Order FUI B 1

Queue Manager DMS B 1

Generate DBID DMS A 2

Tlm Dataset
Preparation (build
dataset)

ANA A 2

Generate Carry-Out ANA A 2

Display/Print Results FUI B 1

Triggers Initiate Trigger DMS B 2

Queue Manager DMS B 1

Generate DBId DMS A 2

Tlm Dataset
Preparation (build
dataset)

ANA A 2

Generate Carry-Out ANA A 2

Display/Print Trigger
Results

FUI B 2

S/C Activity Log Create Parameter List ANA A 2

Tlm Proc-Decom TLM A 2

S/C Activity Log
Monitor

ANA B 2

4-36 307-CD-001-003
329-CD-001-003

Table 4-2. FOS Scenario Matrix (29 of 31)
Activity Phase Thread Component Subsyste

m
Releas

e
Releas
e A/B
Build

Display Status Window FUI A 1

Expert Advisor Tlm Proc-Decom TLM A 2

RTworks Integration ANA A 2

Displaying Telemetry
Data

FUI A 1

Segment System Failure
Recovery

Component Failure
Detection

RMS B 2

Component Failure
Recovery Rqst

FUI B 2

RTS H/W Failure
Recovery

RMS B 2

DMS H/W Failure
Recovery

RMS B 2

User Station H/W
Failure Recovery

RMS B 2

RMS S/W Failure
Recovery

RMS B 2

TLM S/W Failure
Recovery

RMS B 2

CMD S/W Failure
Recovery

RMS B 2

RCM S/W Failure
Recovery

RMS B 2

Checking
Spacecraft State

State Check Request FUI B 2

Providing State Table CMS B 2

Processing Telemetry TLM A 2

Comparing Expected
State with Telemetry

TLM B 2

Displaying Compare
Results

FUI B 2

4-37 307-CD-001-003
329-CD-001-003

Table 4-2. FOS Scenario Matrix (30 of 31)
Activity Phase Thread Component Subsyste

m
Releas

e
Releas
e A/B
Build

State Table Baseline
Request

FUI B 2

Baselining State Table TLM B 2

Clock Correlation Clock Correlation
Request

PAS B 1

Processing TTMs RCM B 2

Processing RCTDs RCM B 2

Processing History
Telemetry

TLM B 1

Calculating Clock Error ANA B 1

Reporting Clock Error ANA B 1

Displaying Clock Error FUI B 1

Clock Error Report ANA B 1

Memory
Management

Maintain Ground
Reference Image

CMS B 1

Export Memory Image
Files

FUI, CMS B 2

Update Memory-to-
Command Map

CMS B 1

Update Ground
Reference Image

CMS B 2

Ingesting Memory
Dump (S/C or
instrument)

Microprocessor
Memory Dump
Request

FUI B 1

Configuring Memory
Dump Processing

RMS B 1

Processing Memory
Dump Telemetry

TLM B 1

4-38 307-CD-001-003
329-CD-001-003

Table 4-2. FOS Scenario Matrix (31 of 31)
Activity Phase Thread Component Subsyste

m
Releas

e
Releas
e A/B
Build

Build Dump Image
from Colletected Tlm

CMS B 2

Memory Dump
Compare

CMS B 2

Display/Print Compare
Results

FUI B 1

Tlm Archive Tlm Retrieve DMS B 1

Ground Tlm Archive DMS A 2

Ground Tlm Retrieve DMS B 2

Solid State
Recorder

SSR Analysis Window FUI B 2

SSR Scheduling PAS B 1

Receive CODA's RCM B 1

Receive NCC Data RCM B 1

Correlate SSR Data
Scheduling

ANA B 2

SSR
Recommendations

ANA B 2

SSR Real-Time
Recommendations

ANA B 2

Provide SSR data to
PAS

ANA B 2

5-1 307-CD-001-003
329-CD-001-003

5. FOS Development Schedules

5.1 FOS Supplementary Master Schedule

The FOS supplementary master schedule serves as the baseline reference for the segment software
turnover dates for releases A and B. Releases A and B functionality is developed in two builds for
each release. The first build for each release is identified as an internal build. The second build
for release A is considered an incremental delivery, and the second build for release B is final
delivery. This schedule identifies milestones for FOS internal and external dependencies, design
walkthroughs, code walkthroughs, and unit tests. Additionally, the turnover dates are relative to
the thread, build and release levels. Copies of the FOS supplementary master schedule are
available upon request from FOS project control.

5-2 307-CD-001-003
329-CD-001-003

This page intentionally left blank.

AB-1 307-CD-001-003
329-CD-001-003

Abbreviations and Acronyms

ACL Access Control List

AD Acceptance Check/TC Data

AGS ASTER Ground System

AM Morning (ante meridiem) -- see EOS AM

Ao Availability

APID Application Identifier

A

R

A

M

Automated Reliability/Availability/Maintainability

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer (formerly
ITIR)

ATC Absolute Time Command

BAP Baseline Activity Profile

BC Bypass check/Control Commands

BD Bypass check/TC Data (Expedited Service)

BDU Bus Data Unit

bps bits per second

CAC Command Activity Controller

CCB Change Control Board

CCSDS Consultative Committee for Space Data Systems

CCTI Control Center Technology Interchange

CD-ROM Compact Disk-Read Only Memory

CDR Critical Design Review

CDRL Contract Data Requirements List

CERES Clouds and Earth's Radiant Energy System

CI Configuration item

CIL Critical Items List

CLCW Command Link Control Words

CLTU Command Link Transmission Unit

CMD Command subsystem

CMS Command Management Subsystem

AB-2 307-CD-001-003
329-CD-001-003

CODA Customer Operations Data Accounting

COP Command Operations Procedure

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

CRC Cyclic Redundancy Code

CSCI Computer software configuration item

CSMS Communications and Systems Management Segment

CSS Communications Subsystem (CSMS)

CSTOL Customer System Test and Operations Language

CTIU Command and Telemetry Interface Unit (AM-1)

DAAC Distributed Active Archive Center

DAR Data Acquisition Request

DAS Detailed Activity Schedule

DAT Digital Audio Tape

DB Data Base

DBA Database Administrator

DBMS Database Management System

DCE Distributed Computing Environment

DCP Default Configuration Procedure

DEC Digital Equipment Corporation

DES Data Encryption Standard

DFCD Data Format Control Document

DID Data Item Description

DMS Data Management Subsystem

DOD Digital Optical Data

DoD Department of Defense

DS Data Server

DSN Deep Space Network

DSS Decision Support System

e-mail electronic mail

Ecom EOS Communication

AB-3 307-CD-001-003
329-CD-001-003

ECS EOSDIS Core System

EDOS EOS Data and Operations System

EDU EDOS Data Unit

EGS EOS Ground System

EOC Earth Observation Center (Japan);

EOS Operations Center (ECS)

EOD Entering Orbital Day

EON Entering Orbital Night

EOS Earth Observing System

EOSDIS EOS Data and Information System

EPS Encapsulated Postscript

ESH EDOS Service Header

ESN EOSDIS Science Network

ETS EOS Test System

EU Engineering Unit

EUVE Extreme Ultra Violet Explorer

FAS FOS Analysis Subsystem

FAST Fast Auroral Snapshot Explorer

FDDI Fiber Distributed Data Interface

FDF Flight Dynamics Facility

FDIR Fault Detection and Isolation Recovery

FDM FOS Data Management Subsystem

FMEA Failure Modes, and Effects Analyses

FOP Frame Operations Procedure

FORMATS FDF Orbital and Mission Aids Transformation System

FOS Flight Operations Segment

FOT Flight Operations Team

FOV Field-Of-View

FPS Fast Packet Switch

FRM FOS Resource Management Subsystem

FSE FOT S/C Evolutions

AB-4 307-CD-001-003
329-CD-001-003

FTL FOS Telemetry Subsystem

FUI FOS User Interface

GB Gigabytes

GCM Global Circulation Model

GCMR Global Circulation Model Request

GIMTACS GOES I-M Telemetry and Command System

GMT Greenwich Mean Time

GN Ground Network

GOES Geostationary Operational Environmental Satellite

GSFC Goddard Space Flight Center

GUI Graphical User Interface

H&S Health and Safety

H/K Housekeeping

HST Hubble Space Telescope

I/F Interface

I/O Input/Output

ICC Instrument Control Center

ICD Interface Control Document

ID Identifier

IDB Instrument Database

IDR Incremental Design Review

IEEE Institute of Electrical and Electronics Engineers

IOT Instrument Operations Team

IP International Partners

IP-ICC International Partners-Instrument Control Center

IPs International Partners

IRD Interface requirements document

ISDN Integrated Systems Digital Network

ISOLAN Isolated Local Area Network

ISR Input Schedule Request

IST Instrument Support Terminal

AB-5 307-CD-001-003
329-CD-001-003

Instrument Support Toolkit

IST Instrument Support Toolkit

IWG Investigator Working Group

JPL Jet Propulsion Laboratory

Kbps Kilobits per second

LAN Local Area Network

LaRC Langley Research Center

LASP Laboratory for Atmospheric Studies Project

LEO Low Earth Orbit

LOS Loss of Signal

LSM Local System Manager

LTIP Long-Term Instrument Plan

LTSP Long-Term Science Plan

MAC Medium Access Control;

Message Authentication Code

MB Megabytes

MBONE Multicast Backbone

Mbps Megabits per second

MDT Mean Down Time

MIB Management Information Base

MISR Multi-angle Imaging Spectro-Radiometer

MMM Minimum, Maximum, and Mean

MO&DSD Mission Operations and Data Systems Directorate (GSFC Code 500)

MODIS Moderate resolution Imaging Spectrometer

MOPITT Measurements Of Pollution In The Troposphere

MSS Management Subsystem

MTPE Mission to Planet Earth

NASA National Aeronautics and Space Administration

Nascom NASA Communications Network

NASDA National Space Development Agency (Japan)

NCAR National Center for Atmospheric Research

AB-6 307-CD-001-003
329-CD-001-003

NCC Network Control Center

NEC North Equator Crossing

NFS Network File System

NOAA National Oceanic and Atmospheric Administration

NSI NASA Science Internet

NTT Nippon Telephone and Telegraph

OASIS Operations and Science Instrument Support

ODB Operational Database

ODM Operational Data Message

OMT Object Model Technique

OO Object Oriented

OOD Object Oriented Design

OpLAN Operational LAN

OSI Open System Interconnect

PACS Polar Acquisition and Command System

PAS Planning and Scheduling

PDB Project Data Base

PDF Publisher's Display Format

PDR Preliminary Design Review

PI Principal Investigator

PI/TL Principal Investigator/Team Leader

PID Parameter ID

PIN Password Identification Number

POLAR Polar Plasma Laboratory

POP Polar-Orbiting Platform

POSIX Portable Operating System for Computing Environments

PSAT Predicted Site Acquisition Table

PSTOL PORTS System Test and Operation Language

Q/L Quick Look

R/T Real-Time

RAID Redundant Array of Inexpensive Disks

AB-7 307-CD-001-003
329-CD-001-003

RCM Real-Time Contact Management

RDBMS Relational Database Management System

RMA Reliability, Maintainability, Availability

RMON Remote Monitoring

RMS Resource Management Subsystem

RPC Remote Processing Computer

RTCS Relative Time Command Sequence

RTS Relative Time Sequence;

Real-Time Server

S/C Spacecraft

SAR Schedule Add Requests

SCC Spacecraft Controls Computer

SCF Science Computing Facility

SCL Spacecraft Command Language

SDF Software Development Facility

SDPS Science Data Processing Segment

SDVF Software Development and Validation Facility

SEAS Systems, Engineering, and Analysis Support

SEC South Equator Crossing

SLAN Support LAN

SMA S-band Multiple Access

SMC Service Management Center

SN Space Network

SNMP System Network Mgt Protocol

SQL Structured Query Language

SSA S-band Single Access

SSIM Spacecraft Simulator

SSR Solid State Recorder

STOL System Test and Operations Language

T&C Telemetry and Command

TAE Transportable Applications Environment

AB-8 307-CD-001-003
329-CD-001-003

TBD To Be Determined

TBR To Be Replaced/Resolved/Reviewed

TCP Transmission Control Protocol

TD Target Day

TDM Time Division Multiplex

TDRS Tracking and Data Relay Satellite

TDRSS Tracking and Data Relay Satellite System

TIROS Television Infrared Operational Satellite

TL Team Leader

TLM Telemetry subsystem

TMON Telemetry Monitor

TOO Target Of Opportunity

TOPEX Topography Ocean Experiment

TPOCC Transportable Payload Operations Control Center

TRMM Tropical Rainfall Measuring Mission

TRUST TDRSS Resource User Support Terminal

TSS TDRSS Service Session

TSTOL TRMM System Test and Operations Language

TW Target Week

U.S. United States

UAV User Antenna View

UI User Interface

UPS User Planning System

US User Station

UTC Universal Time Code;

Universal Time Coordinated

VAX Virtual Extended Address

VMS Virtual Memory System

W/S Workstation

WAN Wide Area Network

WOTS Wallops Orbital Tracking Station

AB-9 307-CD-001-003
329-CD-001-003

XTE X-Ray Timing Explorer

AB-10 307-CD-001-003
329-CD-001-003

This page intentionally left blank.

GL-1 307-CD-001-003
329-CD-001-003

Glossary

activity A specified amount of scheduled work that has a defined start date,
takes a specific amount of time to complete, and comprises definable
tasks.

analysis Technical or mathematical evaluation based on calculation,
interpolation, or other analytical methods. Analysis involves the
processing of accumulated data obtained from other verification
methods.

attitude data Data that represent spacecraft orientation and onboard pointing
information. Attitude data includes:

• Attitude sensor data used to determine the pointing of the spacecraft
axes, calibration and alignment data, Euler angles or quaternions, rates
and biases, and associated parameters.

• Attitude generated onboard in quaternion or Euler angle form.

• Refined and routine production data related to the accuracy or
knowledge of the attitude.

availability A measure of the degree to which an item is in an operable and
committable state at the start of a "mission" (a requirement to perform
its function) when the "mission" is called for an unknown (random)
time. (Mathematically, operational availability is defined as the mean
time between failures divided by the sum of the mean time between
failures and the mean down time [before restoration of function].

availability (inherent)
(Ai)

The probability that, when under stated conditions in an ideal support
environment without consideration for preventive action, a system will
operate satisfactorily at any time. The “ideal support environment”
referred to, exists when the stipulated tools, parts, skilled work force
manuals, support equipment and other support items required are
available. Inherent availability excludes whatever ready time,
preventive maintenance downtime, supply downtime and administrative
downtime may require. Ai can be expressed by the following formula:

Ai = MTBF / (MTBF + MTTR)

Where: MTBF = Mean Time Between Failures

MTTR = Mean Time To Repair

GL-2 307-CD-001-003
329-CD-001-003

availability
(operational) (Ao)

The probability that a system or equipment, when used under stated
conditions in an actual operational environment, will operate
satisfactorily when called upon. Ao can be expressed by the following
formula:

Ao = MTBM / (MTBM + MDT + ST)

Where: MTBM = Mean Time Between Maintenance
(either corrective or preventive)

MDT = Mean Maintenance Down Time where
corrective, preventive administrative and logistics
actions are all considered.

ST = Standby Time (or switch over time)

baseline activity
profile

A schedule of activities for a target week corresponding to normal
instrument operations constructed by integrating long term plans (i.e.,
LTSP, LTIP, and long term spacecraft operations plan).

build An assemblage of threads to produce a gradual buildup of system
capabilities.

calibration The collection of data required to perform calibration of the instrument
science data, instrument engineering data, and the spacecraft
engineering data. It includes pre-flight calibration measurements, in-
flight calibrator measurements, calibration equation coefficients derived
from calibration software routines, and ground truth data that are to be
used in the data calibration processing routine.

command Instruction for action to be carried out by a space-based instrument or
spacecraft.

command and data
handling (C&DH)

The spacecraft command and data handling subsystem which conveys
commands to the spacecraft and research instruments, collects and
formats spacecraft and instrument data, generates time and frequency
references for subsystems and instruments, and collects and distributes
ancillary data.

command group A logical set of one or more commands which are not stored onboard
the spacecraft and instruments for delayed execution, but are executed
immediately upon reaching their destination on board. For the U.S.
spacecraft, from the perspective of the EOS Operations Center (EOC),
a preplanned command group is preprocessed by, and stored at, the
EOC in preparation for later uplink. A real-time command group is
unplanned in the sense that it is not preprocessed and stored by the
EOC.

GL-3 307-CD-001-003
329-CD-001-003

detailed activity
schedules

The schedule for a spacecraft and instruments which covers up to a10
day period and is generated/updated daily based on the instrument
activity listing for each of the instruments on the respective spacecraft.
For a spacecraft and instrument schedule the spacecraft subsystem
activity specifications needed for routine spacecraft maintenance and/or
for supporting instruments activities are incorporated in the detailed
activity schedule.

direct broadcast Continuous down-link transmission of selected real-time data over a
broad area (non-specific users).

EOS Data and
Operations System

(EDOS) production
data set

Data sets generated by EDOS using raw instrument or spacecraft
packets with space-to-ground transmission artifacts removed, in time
order, with duplicate data removed, and with quality/ accounting (Q/A)
metadata appended. Time span, number of packets, or number of
orbits encompassed in a single data set are specified by the recipient of
the data. These data sets are equivalent to Level 0 data formatted with
Q/A metadata.

For EOS, the data sets are composed of: instrument science packets,
instrument engineering packets, spacecraft housekeeping packets, or
onboard ancillary packets with quality and accounting information from
each individual packet and the data set itself and with essential
formatting information for unambiguous identification and subsequent
processing.

housekeeping data The subset of engineering data required for mission and science
operations. These include health and safety, ephemeris, and other
required environmental parameters.

instrument • A hardware system that collects scientific or operational data.

• Hardware-integrated collection of one or more sensors contributing
data of one type to an investigation.

• An integrated collection of hardware containing one or more
sensors and associated controls designed to produce data on/in an
observational environment.

instrument activity
deviation list

An instrument's activity deviations from an existing instrument activity
list, used by the EOC for developing the detailed activity schedule.

instrument activity
list

An instrument's list of activities that nominally covers seven days, used
by the EOC for developing the detailed activity schedule.

instrument
engineering data

All non-science data provided by the instrument.

GL-4 307-CD-001-003
329-CD-001-003

instrument
microprocessor
memory loads

Storage of data into the contents of the memory of an instrument’s
microprocessor, if applicable. These loads could include
microprocessor-stored tables, microprocessor-stored commands, or
updates to microprocessor software.

instrument resource
deviation list

An instrument's anticipated resource deviations from an existing
resource profile, used by the EOC for establishing TDRSS contact
times and building the preliminary resource schedule.

instrument resource
profile

Anticipated resource needs for an instrument over a target week, used
by the EOC for establishing TDRSS contact times and building the
preliminary resource schedule.

instrument science
data

Data produced by the science sensor(s) of an instrument, usually
constituting the mission of that instrument.

long-term instrument
plan (LTIP)

The plan generated by the instrument representative to the spacecraft's
IWG with instrument-specific information to complement the LTSP. It
is generated or updated approximately every six months and covers a
period of up to approximately 5 years.

long-term science
plan (LTSP)

The plan generated by the spacecraft's IWG containing guidelines,
policy, and priorities for its spacecraft and instruments. The LTSP is
generated or updated approximately every six months and covers a
period of up to approximately five years.

long term spacecraft
operations plan

Outlines anticipated spacecraft subsystem operations and maintenance,
along with forecasted orbit maneuvers from the Flight Dynamics
Facility, spanning a period of several months.

mean time between
failure (MTBF)

The reliability result of the reciprocal of a failure rate that predicts the
average number of hours that an item, assembly or piece part will
operate within specific design parameters. (MTBF=1/(l) failure rate; (l)
failure rate = # of failures/operating time.

mean time between
maintenance
(MTBM)

The average time between all maintenance including both corrective and
preventive maintenance.

mean time to repair
(MTTR)

The mean time required to perform corrective maintenance to restore a
system/equipment to operate within design parameters.

object Identifiable encapsulated entities providing one or more services that
clients can request. Objects are created and destroyed as a result of
object requests. Objects are identified by client via unique reference.

GL-5 307-CD-001-003
329-CD-001-003

orbit data Data that represent spacecraft locations. Orbit (or ephemeris) data
include: Geodetic latitude, longitude and height above an adopted
reference ellipsoid (or distance from the center of mass of the Earth); a
corresponding statement about the accuracy of the position and the
corresponding time of the position (including the time system); some
accuracy requirements may be hundreds of meters while other may be a
few centimeters.

playback data Data that have been stored on-board the spacecraft for delayed
transmission to the ground.

preliminary resource
schedule

An initial integrated spacecraft schedule, derived from instrument and
subsystem resource needs, that includes the network control center
TDRSS contact times and nominally spans seven days.

preplanned stored
command

A command issued to an instrument or subsystem to be executed at
some later time. These commands will be collected and forwarded
during an available uplink prior to execution.

principal investigator
(PI)

An individual who is contracted to conduct a specific scientific
investigation. (An instrument PI is the person designated by the EOS
Program as ultimately responsible for the delivery and performance of
standard products derived from an EOS instrument investigation.).

prototype Prototypes are focused developments of some aspect of the system
which may advance evolutionary change. Prototypes may be
developed without anticipation of the resulting software being directly
included in a formal release. Prototypes are developed on a faster time
scale than the incremental and formal development track.

raw data Data in their original packets, as received from the spacecraft and
instruments, unprocessed by EDOS.

• Level 0 – Raw instrument data at original resolution, time ordered,
with duplicate packets removed.

• Level 1A – Level 0 data, which may have been reformatted or
transformed reversibly, located to a coordinate system, and packaged
with needed ancillary and engineering data.

• Level 1B – Radiometrically corrected and calibrated data in physical
units at full instrument resolution as acquired.

• Level 2 – Retrieved environmental variables (e.g., ocean wave
height, soil moisture, ice concentration) at the same location and similar
resolution as the Level 1 source data.

GL-6 307-CD-001-003
329-CD-001-003

• Level 3 – Data or retrieved environmental variables that have been
spatially and/or temporally resampled (i.e., derived from Level 1 or
Level 2 data products). Such resampling may include averaging and
compositing.

• Level 4 – Model output and/or variables derived from lower level
data which are not directly measured by the instruments. For example,
new variables based upon a time series of Level 2 or Level 3 data.

real-time data Data that are acquired and transmitted immediately to the ground (as
opposed to playback data). Delay is limited to the actual time required
to transmit the data.

reconfiguration A change in operational hardware, software, data bases or procedures
brought about by a change in a system’s objectives.

SCC-stored
commands and
tables

Commands and tables which are stored in the memory of the central
onboard computer on the spacecraft. The execution of these commands
or the result of loading these operational tables occurs sometime
following their storage. The term “core-stored” applies only to the
location where the items are stored on the spacecraft and instruments;
core-stored commands or tables could be associated with the spacecraft
or any of the instruments.

scenario A description of the operation of the system in user’s terminology
including a description of the output response for a given set of input
stimuli. Scenarios are used to define operations concepts.

segment One of the three functional subdivisions of the ECS:

CSMS – Communications and Systems Management Segment

FOS – Flight Operations Segment

SDPS – Science Data Processing Segment

sensor A device which transmits an output signal in response to a physical
input stimulus (such as radiance, sound, etc.). Science and engineering
sensors are distinguished according to the stimuli to which they
respond.

• Sensor name: The name of the satellite sensor which was used to
obtain that data.

spacecraft
engineering data

The subset of engineering data from spacecraft sensor measurements
and on-board computations.

GL-7 307-CD-001-003
329-CD-001-003

spacecraft
subsystems activity
list

A spacecraft subsystem's list of activities that nominally covers

seven days, used by the EOC for developing the detailed activity
schedule.

spacecraft
subsystems resource
profile

Anticipated resource needs for a spacecraft subsystem over a target
week, used by the EOC for establishing TDRSS contact times and
building the preliminary resource schedule.

target of opportunity
(TOO)

A TOO is a science event or phenomenon that cannot be fully predicted
in advance, thus requiring timely system response or high-priority
processing.

thread A set of components (software, hardware, and data) and operational
procedures that implement a function or set of functions.

thread, as used in
s o m e S y s t e m s
Engineering
documents

A set of components (software, hardware, and data) and operational
procedures that implement a scenario, portion of a scenario, or multiple
scenarios.

toolkits Some user toolkits developed by the ECS contractor will be packaged
and delivered on a schedule independent of ECS releases to facilitate
science data processing software development and other development
activities occurring in parallel with the ECS.

GL-8 307-CD-001-003
329-CD-001-003

This page intentionally left blank.

	1. Introduction
	2. Related Documentation
	3. FOS Development Guidelines and Standards
	3.1 Background
	3.2 Engineering Products
	3.3 Object Oriented Development Guidelines
	3.4 FOS Development
	3.5 Configuration Management

	4. FOS Release Development Plan
	5. FOS Development Schedules

